Goto

Collaborating Authors

 Zhou, Cai


FiTv2: Scalable and Improved Flexible Vision Transformer for Diffusion Model

arXiv.org Artificial Intelligence

\textit{Nature is infinitely resolution-free}. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To address this limitation, we conceptualize images as sequences of tokens with dynamic sizes, rather than traditional methods that perceive images as fixed-resolution grids. This perspective enables a flexible training strategy that seamlessly accommodates various aspect ratios during both training and inference, thus promoting resolution generalization and eliminating biases introduced by image cropping. On this basis, we present the \textbf{Flexible Vision Transformer} (FiT), a transformer architecture specifically designed for generating images with \textit{unrestricted resolutions and aspect ratios}. We further upgrade the FiT to FiTv2 with several innovative designs, includingthe Query-Key vector normalization, the AdaLN-LoRA module, a rectified flow scheduler, and a Logit-Normal sampler. Enhanced by a meticulously adjusted network structure, FiTv2 exhibits $2\times$ convergence speed of FiT. When incorporating advanced training-free extrapolation techniques, FiTv2 demonstrates remarkable adaptability in both resolution extrapolation and diverse resolution generation. Additionally, our exploration of the scalability of the FiTv2 model reveals that larger models exhibit better computational efficiency. Furthermore, we introduce an efficient post-training strategy to adapt a pre-trained model for the high-resolution generation. Comprehensive experiments demonstrate the exceptional performance of FiTv2 across a broad range of resolutions. We have released all the codes and models at \url{https://github.com/whlzy/FiT} to promote the exploration of diffusion transformer models for arbitrary-resolution image generation.


Towards Stable, Globally Expressive Graph Representations with Laplacian Eigenvectors

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have achieved remarkable success in a variety of machine learning tasks over graph data. Existing GNNs usually rely on message passing, i.e., computing node representations by gathering information from the neighborhood, to build their underlying computational graphs. Such an approach has been shown fairly limited in expressive power, and often fails to capture global characteristics of graphs. To overcome the issue, a popular solution is to use Laplacian eigenvectors as additional node features, as they are known to contain global positional information of nodes, and can serve as extra node identifiers aiding GNNs to separate structurally similar nodes. Since eigenvectors naturally come with symmetries--namely, O(p)-group symmetry for every p eigenvectors with equal eigenvalue, properly handling such symmetries is crucial for the stability and generalizability of Laplacian eigenvector augmented GNNs. However, using a naive O(p)-group invariant encoder for each p-dimensional eigenspace may not keep the full expressivity in the Laplacian eigenvectors. Moreover, computing such invariants inevitably entails a hard split of Laplacian eigenvalues according to their numerical identity, which suffers from great instability when the graph structure has small perturbations. In this paper, we propose a novel method exploiting Laplacian eigenvectors to generate stable and globally expressive graph representations. The main difference from previous works is that (i) our method utilizes learnable O(p)-invariant representations for each Laplacian eigenspace of dimensionp, which are built upon powerful orthogonal group equivariant neural network layers already well studied in the literature, and that (ii) our method deals with numerically close eigenvalues in a smooth fashion, ensuring its better robustness against perturbations. Experiments on various graph learning benchmarks witness the competitive performance of our method, especially its great potential to learn global properties of graphs.


Geometric Representation Condition Improves Equivariant Molecule Generation

arXiv.org Artificial Intelligence

Recent advancements in molecular generative models have demonstrated substantial potential in accelerating scientific discovery, particularly in drug design. However, these models often face challenges in generating high-quality molecules, especially in conditional scenarios where specific molecular properties must be satisfied. In this work, we introduce GeoRCG, a general framework to enhance the performance of molecular generative models by integrating geometric representation conditions. We decompose the molecule generation process into two stages: first, generating an informative geometric representation; second, generating a molecule conditioned on the representation. Compared to directly generating a molecule, the relatively easy-to-generate representation in the first-stage guides the second-stage generation to reach a high-quality molecule in a more goal-oriented and much faster way. Leveraging EDM as the base generator, we observe significant quality improvements in unconditional molecule generation on the widely-used QM9 and GEOM-DRUG datasets. More notably, in the challenging conditional molecular generation task, our framework achieves an average 31\% performance improvement over state-of-the-art approaches, highlighting the superiority of conditioning on semantically rich geometric representations over conditioning on individual property values as in previous approaches. Furthermore, we show that, with such representation guidance, the number of diffusion steps can be reduced to as small as 100 while maintaining superior generation quality than that achieved with 1,000 steps, thereby significantly accelerating the generation process.


On the Theoretical Expressive Power and the Design Space of Higher-Order Graph Transformers

arXiv.org Artificial Intelligence

Graph transformers have recently received significant attention in graph learning, partly due to their ability to capture more global interaction via self-attention. Nevertheless, while higher-order graph neural networks have been reasonably well studied, the exploration of extending graph transformers to higher-order variants is just starting. Both theoretical understanding and empirical results are limited. In this paper, we provide a systematic study of the theoretical expressive power of order-$k$ graph transformers and sparse variants. We first show that, an order-$k$ graph transformer without additional structural information is less expressive than the $k$-Weisfeiler Lehman ($k$-WL) test despite its high computational cost. We then explore strategies to both sparsify and enhance the higher-order graph transformers, aiming to improve both their efficiency and expressiveness. Indeed, sparsification based on neighborhood information can enhance the expressive power, as it provides additional information about input graph structures. In particular, we show that a natural neighborhood-based sparse order-$k$ transformer model is not only computationally efficient, but also expressive -- as expressive as $k$-WL test. We further study several other sparse graph attention models that are computationally efficient and provide their expressiveness analysis. Finally, we provide experimental results to show the effectiveness of the different sparsification strategies.


Facilitating Graph Neural Networks with Random Walk on Simplicial Complexes

arXiv.org Artificial Intelligence

Node-level random walk has been widely used to improve Graph Neural Networks. However, there is limited attention to random walk on edge and, more generally, on $k$-simplices. This paper systematically analyzes how random walk on different orders of simplicial complexes (SC) facilitates GNNs in their theoretical expressivity. First, on $0$-simplices or node level, we establish a connection between existing positional encoding (PE) and structure encoding (SE) methods through the bridge of random walk. Second, on $1$-simplices or edge level, we bridge edge-level random walk and Hodge $1$-Laplacians and design corresponding edge PE respectively. In the spatial domain, we directly make use of edge level random walk to construct EdgeRWSE. Based on the spectral analysis of Hodge $1$-Laplcians, we propose Hodge1Lap, a permutation equivariant and expressive edge-level positional encoding. Third, we generalize our theory to random walk on higher-order simplices and propose the general principle to design PE on simplices based on random walk and Hodge Laplacians. Inter-level random walk is also introduced to unify a wide range of simplicial networks. Extensive experiments verify the effectiveness of our random walk-based methods.


From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks

arXiv.org Artificial Intelligence

Relational pooling is a framework for building more expressive and permutation-invariant graph neural networks. However, there is limited understanding of the exact enhancement in the expressivity of RP and its connection with the Weisfeiler Lehman hierarchy. Starting from RP, we propose to explicitly assign labels to nodes as additional features to improve expressive power of message passing neural networks. The method is then extended to higher dimensional WL, leading to a novel $k,l$-WL algorithm, a more general framework than $k$-WL. Theoretically, we analyze the expressivity of $k,l$-WL with respect to $k$ and $l$ and unifies it with a great number of subgraph GNNs. Complexity reduction methods are also systematically discussed to build powerful and practical $k,l$-GNN instances. We theoretically and experimentally prove that our method is universally compatible and capable of improving the expressivity of any base GNN model. Our $k,l$-GNNs achieve superior performance on many synthetic and real-world datasets, which verifies the effectiveness of our framework.