Zhou, Bo
PIM: Physics-Informed Multi-task Pre-training for Improving Inertial Sensor-Based Human Activity Recognition
Nshimyimana, Dominique, Rey, Vitor Fortes, Suh, Sungho, Zhou, Bo, Lukowicz, Paul
Human activity recognition (HAR) with deep learning models relies on large amounts of labeled data, often challenging to obtain due to associated cost, time, and labor. Self-supervised learning (SSL) has emerged as an effective approach to leverage unlabeled data through pretext tasks, such as masked reconstruction and multitask learning with signal processing-based data augmentations, to pre-train encoder models. However, such methods are often derived from computer vision approaches that disregard physical mechanisms and constraints that govern wearable sensor data and the phenomena they reflect. In this paper, we propose a physics-informed multi-task pre-training (PIM) framework for IMU-based HAR. PIM generates pre-text tasks based on the understanding of basic physical aspects of human motion: including movement speed, angles of movement, and symmetry between sensor placements. Given a sensor signal, we calculate corresponding features using physics-based equations and use them as pretext tasks for SSL. This enables the model to capture fundamental physical characteristics of human activities, which is especially relevant for multi-sensor systems. Experimental evaluations on four HAR benchmark datasets demonstrate that the proposed method outperforms existing state-of-the-art methods, including data augmentation and masked reconstruction, in terms of accuracy and F1 score. We have observed gains of almost 10\% in macro f1 score and accuracy with only 2 to 8 labeled examples per class and up to 3% when there is no reduction in the amount of training data.
VMTS: Vision-Assisted Teacher-Student Reinforcement Learning for Multi-Terrain Locomotion in Bipedal Robots
Chen, Fu, Wan, Rui, Liu, Peidong, Zheng, Nanxing, Zhou, Bo
Bipedal robots, due to their anthropomorphic design, offer substantial potential across various applications, yet their control is hindered by the complexity of their structure. Currently, most research focuses on proprioception-based methods, which lack the capability to overcome complex terrain. While visual perception is vital for operation in human-centric environments, its integration complicates control further. Recent reinforcement learning (RL) approaches have shown promise in enhancing legged robot locomotion, particularly with proprioception-based methods. However, terrain adaptability, especially for bipedal robots, remains a significant challenge, with most research focusing on flat-terrain scenarios. In this paper, we introduce a novel mixture of experts teacher-student network RL strategy, which enhances the performance of teacher-student policies based on visual inputs through a simple yet effective approach. Our method combines terrain selection strategies with the teacher policy, resulting in superior performance compared to traditional models. Additionally, we introduce an alignment loss between the teacher and student networks, rather than enforcing strict similarity, to improve the student's ability to navigate diverse terrains. We validate our approach experimentally on the Limx Dynamic P1 bipedal robot, demonstrating its feasibility and robustness across multiple terrain types.
Efficient 4D fMRI ASD Classification using Spatial-Temporal-Omics-based Learning Framework
Weng, Ziqiao, Cai, Weidong, Zhou, Bo
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder impacting social and behavioral development. Resting-state fMRI, a non-invasive tool for capturing brain connectivity patterns, aids in early ASD diagnosis and differentiation from typical controls (TC). However, previous methods, which rely on either mean time series or full 4D data, are limited by a lack of spatial information or by high computational costs. This underscores the need for an efficient solution that preserves both spatial and temporal information. In this paper, we propose a novel, simple, and efficient spatial-temporal-omics learning framework designed to efficiently extract spatio-temporal features from fMRI for ASD classification. Our approach addresses these limitations by utilizing 3D time-domain derivatives as the spatial-temporal inter-voxel omics, which preserve full spatial resolution while capturing diverse statistical characteristics of the time series at each voxel. Meanwhile, functional connectivity features serve as the spatial-temporal inter-regional omics, capturing correlations across brain regions. Extensive experiments and ablation studies on the ABIDE dataset demonstrate that our framework significantly outperforms previous methods while maintaining computational efficiency. We believe our research offers valuable insights that will inform and advance future ASD studies, particularly in the realm of spatial-temporal-omics-based learning.
Survey on Strategic Mining in Blockchain: A Reinforcement Learning Approach
Li, Jichen, Xie, Lijia, Huang, Hanting, Zhou, Bo, Song, Binfeng, Zeng, Wanying, Deng, Xiaotie, Zhang, Xiao
Strategic mining attacks, such as selfish mining, exploit blockchain consensus protocols by deviating from honest behavior to maximize rewards. Markov Decision Process (MDP) analysis faces scalability challenges in modern digital economics, including blockchain. To address these limitations, reinforcement learning (RL) provides a scalable alternative, enabling adaptive strategy optimization in complex dynamic environments. In this survey, we examine RL's role in strategic mining analysis, comparing it to MDP-based approaches. W e begin by reviewing foundational MDP models and their limitations, before exploring RL frameworks that can learn near-optimal strategies across various protocols. Building on this analysis, we compare RL techniques and their effectiveness in deriving security thresholds, such as the minimum attacker power required for profitable attacks. Expanding the discussion further, we classify consensus protocols and propose open challenges, such as multi-agent dynamics and real-world validation. This survey highlights the potential of reinforcement learning (RL) to address the challenges of selfish mining, including protocol design, threat detection, and security analysis, while offering a strategic roadmap for researchers in decentralized systems and AI-driven analytics.
Initial Findings on Sensor based Open Vocabulary Activity Recognition via Text Embedding Inversion
Ray, Lala Shakti Swarup, Zhou, Bo, Suh, Sungho, Lukowicz, Paul
Conventional human activity recognition (HAR) relies on classifiers trained to predict discrete activity classes, inherently limiting recognition to activities explicitly present in the training set. Such classifiers would invariably fail, putting zero likelihood, when encountering unseen activities. We propose Open Vocabulary HAR (OV-HAR), a framework that overcomes this limitation by first converting each activity into natural language and breaking it into a sequence of elementary motions. This descriptive text is then encoded into a fixed-size embedding. The model is trained to regress this embedding, which is subsequently decoded back into natural language using a pre-trained embedding inversion model. Unlike other works that rely on auto-regressive large language models (LLMs) at their core, OV-HAR achieves open vocabulary recognition without the computational overhead of such models. The generated text can be transformed into a single activity class using LLM prompt engineering. We have evaluated our approach on different modalities, including vision (pose), IMU, and pressure sensors, demonstrating robust generalization across unseen activities and modalities, offering a fundamentally different paradigm from contemporary classifiers.
OV-HHIR: Open Vocabulary Human Interaction Recognition Using Cross-modal Integration of Large Language Models
Ray, Lala Shakti Swarup, Zhou, Bo, Suh, Sungho, Lukowicz, Paul
Understanding human-to-human interactions, especially in contexts like public security surveillance, is critical for monitoring and maintaining safety. Traditional activity recognition systems are limited by fixed vocabularies, predefined labels, and rigid interaction categories that often rely on choreographed videos and overlook concurrent interactive groups. These limitations make such systems less adaptable to real-world scenarios, where interactions are diverse and unpredictable. In this paper, we propose an open vocabulary human-to-human interaction recognition (OV-HHIR) framework that leverages large language models to generate open-ended textual descriptions of both seen and unseen human interactions in open-world settings without being confined to a fixed vocabulary. Additionally, we create a comprehensive, large-scale human-to-human interaction dataset by standardizing and combining existing public human interaction datasets into a unified benchmark. Extensive experiments demonstrate that our method outperforms traditional fixed-vocabulary classification systems and existing cross-modal language models for video understanding, setting the stage for more intelligent and adaptable visual understanding systems in surveillance and beyond.
FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification
Gao, Yicheng, Hao, Jinkui, Zhou, Bo
Recent advancements in deep learning have shown transformative potential in medical imaging, yet concerns about fairness persist due to performance disparities across demographic subgroups. Existing methods aim to address these biases by mitigating sensitive attributes in image data; however, these attributes often carry clinically relevant information, and their removal can compromise model performance-a highly undesirable outcome. To address this challenge, we propose Fair Re-fusion After Disentanglement (FairREAD), a novel, simple, and efficient framework that mitigates unfairness by re-integrating sensitive demographic attributes into fair image representations. FairREAD employs orthogonality constraints and adversarial training to disentangle demographic information while using a controlled re-fusion mechanism to preserve clinically relevant details. Additionally, subgroup-specific threshold adjustments ensure equitable performance across demographic groups. Comprehensive evaluations on a large-scale clinical X-ray dataset demonstrate that FairREAD significantly reduces unfairness metrics while maintaining diagnostic accuracy, establishing a new benchmark for fairness and performance in medical image classification.
Beyond Confusion: A Fine-grained Dialectical Examination of Human Activity Recognition Benchmark Datasets
Geissler, Daniel, Nshimyimana, Dominique, Rey, Vitor Fortes, Suh, Sungho, Zhou, Bo, Lukowicz, Paul
The research of machine learning (ML) algorithms for human activity recognition (HAR) has made significant progress with publicly available datasets. However, most research prioritizes statistical metrics over examining negative sample details. While recent models like transformers have been applied to HAR datasets with limited success from the benchmark metrics, their counterparts have effectively solved problems on similar levels with near 100% accuracy. This raises questions about the limitations of current approaches. This paper aims to address these open questions by conducting a fine-grained inspection of six popular HAR benchmark datasets. We identified for some parts of the data, none of the six chosen state-of-the-art ML methods can correctly classify, denoted as the intersect of false classifications (IFC). Analysis of the IFC reveals several underlying problems, including ambiguous annotations, irregularities during recording execution, and misaligned transition periods. We contribute to the field by quantifying and characterizing annotated data ambiguities, providing a trinary categorization mask for dataset patching, and stressing potential improvements for future data collections.
Deep Learning for Spectrum Prediction in Cognitive Radio Networks: State-of-the-Art, New Opportunities, and Challenges
Pan, Guangliang, Yau, David K. Y., Zhou, Bo, Wu, Qihui
Spectrum prediction is considered to be a promising technology that enhances spectrum efficiency by assisting dynamic spectrum access (DSA) in cognitive radio networks (CRN). Nonetheless, the highly nonlinear nature of spectrum data across time, frequency, and space domains, coupled with the intricate spectrum usage patterns, poses challenges for accurate spectrum prediction. Deep learning (DL), recognized for its capacity to extract nonlinear features, has been applied to solve these challenges. This paper first shows the advantages of applying DL by comparing with traditional prediction methods. Then, the current state-of-the-art DL-based spectrum prediction techniques are reviewed and summarized in terms of intra-band and crossband prediction. Notably, this paper uses a real-world spectrum dataset to prove the advancements of DL-based methods. Then, this paper proposes a novel intra-band spatiotemporal spectrum prediction framework named ViTransLSTM. This framework integrates visual self-attention and long short-term memory to capture both local and global long-term spatiotemporal dependencies of spectrum usage patterns. Similarly, the effectiveness of the proposed framework is validated on the aforementioned real-world dataset. Finally, the paper presents new related challenges and potential opportunities for future research.
Spend More to Save More (SM2): An Energy-Aware Implementation of Successive Halving for Sustainable Hyperparameter Optimization
Geissler, Daniel, Zhou, Bo, Suh, Sungho, Lukowicz, Paul
A fundamental step in the development of machine learning models commonly involves the tuning of hyperparameters, often leading to multiple model training runs to work out the best-performing configuration. As machine learning tasks and models grow in complexity, there is an escalating need for solutions that not only improve performance but also address sustainability concerns. Existing strategies predominantly focus on maximizing the performance of the model without considering energy efficiency. To bridge this gap, in this paper, we introduce Spend More to Save More (SM2), an energy-aware hyperparameter optimization implementation based on the widely adopted successive halving algorithm. Unlike conventional approaches including energy-intensive testing of individual hyperparameter configurations, SM2 employs exploratory pretraining to identify inefficient configurations with minimal energy expenditure. Incorporating hardware characteristics and real-time energy consumption tracking, SM2 identifies an optimal configuration that not only maximizes the performance of the model but also enables energy-efficient training. Experimental validations across various datasets, models, and hardware setups confirm the efficacy of SM2 to prevent the waste of energy during the training of hyperparameter configurations.