Zhong, Yihao
Advanced Multimodal Deep Learning Architecture for Image-Text Matching
Wang, Jinyin, Zhang, Haijing, Zhong, Yihao, Liang, Yingbin, Ji, Rongwei, Cang, Yiru
Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship. With the advent of the multimedia information age, image, and text data show explosive growth, and how to accurately realize the efficient and accurate semantic correspondence between them has become the core issue of common concern in academia and industry. In this study, we delve into the limitations of current multimodal deep learning models in processing image-text pairing tasks. Therefore, we innovatively design an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding. By introducing a novel cross-modal attention mechanism and hierarchical feature fusion strategy, the model achieves deep fusion and two-way interaction between image and text feature space. In addition, we also optimize the training objectives and loss functions to ensure that the model can better map the potential association structure between images and text during the learning process. Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets. In addition, the new model also shows excellent generalization and robustness on large and diverse open scenario datasets and can maintain high matching performance even in the face of previously unseen complex situations.
Research on Image Recognition Technology Based on Multimodal Deep Learning
Wang, Jinyin, Li, Xingchen, Jin, Yixuan, Zhong, Yihao, Zhang, Keke, Zhou, Chang
This project investigates the human multi-modal behavior identification algorithm utilizing deep neural networks. According to the characteristics of different modal information, different deep neural networks are used to adapt to different modal video information. Through the integration of various deep neural networks, the algorithm successfully identifies behaviors across multiple modalities. In this project, multiple cameras developed by Microsoft Kinect were used to collect corresponding bone point data based on acquiring conventional images. In this way, the motion features in the image can be extracted. Ultimately, the behavioral characteristics discerned through both approaches are synthesized to facilitate the precise identification and categorization of behaviors. The performance of the suggested algorithm was evaluated using the MSR3D data set. The findings from these experiments indicate that the accuracy in recognizing behaviors remains consistently high, suggesting that the algorithm is reliable in various scenarios. Additionally, the tests demonstrate that the algorithm substantially enhances the accuracy of detecting pedestrian behaviors in video footage.