Zhong, Yanfei
MapChange: Enhancing Semantic Change Detection with Temporal-Invariant Historical Maps Based on Deep Triplet Network
Liu, Yinhe, Shi, Sunan, Zheng, Zhuo, Wang, Jue, Tian, Shiqi, Zhong, Yanfei
Semantic Change Detection (SCD) is recognized as both a crucial and challenging task in the field of image analysis. Traditional methods for SCD have predominantly relied on the comparison of image pairs. However, this approach is significantly hindered by substantial imaging differences, which arise due to variations in shooting times, atmospheric conditions, and angles. Such discrepancies lead to two primary issues: the under-detection of minor yet significant changes, and the generation of false alarms due to temporal variances. These factors often result in unchanged objects appearing markedly different in multi-temporal images. In response to these challenges, the MapChange framework has been developed. This framework introduces a novel paradigm that synergizes temporal-invariant historical map data with contemporary high-resolution images. By employing this combination, the temporal variance inherent in conventional image pair comparisons is effectively mitigated. The efficacy of the MapChange framework has been empirically validated through comprehensive testing on two public datasets. These tests have demonstrated the framework's marked superiority over existing state-of-the-art SCD methods.
Scalable Multi-Temporal Remote Sensing Change Data Generation via Simulating Stochastic Change Process
Zheng, Zhuo, Tian, Shiqi, Ma, Ailong, Zhang, Liangpei, Zhong, Yanfei
Understanding the temporal dynamics of Earth's surface is a mission of multi-temporal remote sensing image analysis, significantly promoted by deep vision models with its fuel -- labeled multi-temporal images. However, collecting, preprocessing, and annotating multi-temporal remote sensing images at scale is non-trivial since it is expensive and knowledge-intensive. In this paper, we present a scalable multi-temporal remote sensing change data generator via generative modeling, which is cheap and automatic, alleviating these problems. Our main idea is to simulate a stochastic change process over time. We consider the stochastic change process as a probabilistic semantic state transition, namely generative probabilistic change model (GPCM), which decouples the complex simulation problem into two more trackable sub-problems, \ie, change event simulation and semantic change synthesis. To solve these two problems, we present the change generator (Changen), a GAN-based GPCM, enabling controllable object change data generation, including customizable object property, and change event. The extensive experiments suggest that our Changen has superior generation capability, and the change detectors with Changen pre-training exhibit excellent transferability to real-world change datasets.
Seeing Beyond the Patch: Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcement Learning
Liu, Yinhe, Shi, Sunan, Wang, Junjue, Zhong, Yanfei
In remote sensing imagery analysis, patch-based methods have limitations in capturing information beyond the sliding window. This shortcoming poses a significant challenge in processing complex and variable geo-objects, which results in semantic inconsistency in segmentation results. To address this challenge, we propose a dynamic scale perception framework, named GeoAgent, which adaptively captures appropriate scale context information outside the image patch based on the different geo-objects. In GeoAgent, each image patch's states are represented by a global thumbnail and a location mask. The global thumbnail provides context beyond the patch, and the location mask guides the perceived spatial relationships. The scale-selection actions are performed through a Scale Control Agent (SCA). A feature indexing module is proposed to enhance the ability of the agent to distinguish the current image patch's location. The action switches the patch scale and context branch of a dual-branch segmentation network that extracts and fuses the features of multi-scale patches. The GeoAgent adjusts the network parameters to perform the appropriate scale-selection action based on the reward received for the selected scale. The experimental results, using two publicly available datasets and our newly constructed dataset WUSU, demonstrate that GeoAgent outperforms previous segmentation methods, particularly for large-scale mapping applications.
Anomaly Segmentation for High-Resolution Remote Sensing Images Based on Pixel Descriptors
Li, Jingtao, Wang, Xinyu, Zhao, Hengwei, Wang, Shaoyu, Zhong, Yanfei
Anomaly segmentation in high spatial resolution (HSR) remote sensing imagery is aimed at segmenting anomaly patterns of the earth deviating from normal patterns, which plays an important role in various Earth vision applications. However, it is a challenging task due to the complex distribution and the irregular shapes of objects, and the lack of abnormal samples. To tackle these problems, an anomaly segmentation model based on pixel descriptors (ASD) is proposed for anomaly segmentation in HSR imagery. Specifically, deep one-class classification is introduced for anomaly segmentation in the feature space with discriminative pixel descriptors. The ASD model incorporates the data argument for generating virtual ab-normal samples, which can force the pixel descriptors to be compact for normal data and meanwhile to be diverse to avoid the model collapse problems when only positive samples participated in the training. In addition, the ASD introduced a multi-level and multi-scale feature extraction strategy for learning the low-level and semantic information to make the pixel descriptors feature-rich. The proposed ASD model was validated using four HSR datasets and compared with the recent state-of-the-art models, showing its potential value in Earth vision applications.
One-Step Detection Paradigm for Hyperspectral Anomaly Detection via Spectral Deviation Relationship Learning
Li, Jingtao, Wang, Xinyu, Wang, Shaoyu, Zhao, Hengwei, Zhang, Liangpei, Zhong, Yanfei
Hyperspectral anomaly detection (HAD) involves identifying the targets that deviate spectrally from their surroundings, without prior knowledge. Recently, deep learning based methods have become the mainstream HAD methods, due to their powerful spatial-spectral feature extraction ability. However, the current deep detection models are optimized to complete a proxy task (two-step paradigm), such as background reconstruction or generation, rather than achieving anomaly detection directly. This leads to suboptimal results and poor transferability, which means that the deep model is trained and tested on the same image. In this paper, an unsupervised transferred direct detection (TDD) model is proposed, which is optimized directly for the anomaly detection task (one-step paradigm) and has transferability. Specially, the TDD model is optimized to identify the spectral deviation relationship according to the anomaly definition. Compared to learning the specific background distribution as most models do, the spectral deviation relationship is universal for different images and guarantees the model transferability. To train the TDD model in an unsupervised manner, an anomaly sample simulation strategy is proposed to generate numerous pairs of anomaly samples. Furthermore, a global self-attention module and a local self-attention module are designed to help the model focus on the "spectrally deviating" relationship. The TDD model was validated on four public HAD datasets. The results show that the proposed TDD model can successfully overcome the limitation of traditional model training and testing on a single image, and the model has a powerful detection ability and excellent transferability.