Zhong, Rui
AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
Xu, Chenyang, Deng, XingGuo, Zhong, Rui
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
NuExo: A Wearable Exoskeleton Covering all Upper Limb ROM for Outdoor Data Collection and Teleoperation of Humanoid Robots
Zhong, Rui, Cheng, Chuang, Xu, Junpeng, Wei, Yantong, Guo, Ce, Zhang, Daoxun, Dai, Wei, Lu, Huimin
The evolution from motion capture and teleoperation to robot skill learning has emerged as a hotspot and critical pathway for advancing embodied intelligence. However, existing systems still face a persistent gap in simultaneously achieving four objectives: accurate tracking of full upper limb movements over extended durations (Accuracy), ergonomic adaptation to human biomechanics (Comfort), versatile data collection (e.g., force data) and compatibility with humanoid robots (Versatility), and lightweight design for outdoor daily use (Convenience). We present a wearable exoskeleton system, incorporating user-friendly immersive teleoperation and multi-modal sensing collection to bridge this gap. Due to the features of a novel shoulder mechanism with synchronized linkage and timing belt transmission, this system can adapt well to compound shoulder movements and replicate 100% coverage of natural upper limb motion ranges. Weighing 5.2 kg, NuExo supports backpack-type use and can be conveniently applied in daily outdoor scenarios. Furthermore, we develop a unified intuitive teleoperation framework and a comprehensive data collection system integrating multi-modal sensing for various humanoid robots. Experiments across distinct humanoid platforms and different users validate our exoskeleton's superiority in motion range and flexibility, while confirming its stability in data collection and teleoperation accuracy in dynamic scenarios.
LLM-Powered User Simulator for Recommender System
Zhang, Zijian, Liu, Shuchang, Liu, Ziru, Zhong, Rui, Cai, Qingpeng, Zhao, Xiangyu, Zhang, Chunxu, Liu, Qidong, Jiang, Peng
User simulators can rapidly generate a large volume of timely user behavior data, providing a testing platform for reinforcement learning-based recommender systems, thus accelerating their iteration and optimization. However, prevalent user simulators generally suffer from significant limitations, including the opacity of user preference modeling and the incapability of evaluating simulation accuracy. In this paper, we introduce an LLM-powered user simulator to simulate user engagement with items in an explicit manner, thereby enhancing the efficiency and effectiveness of reinforcement learning-based recommender systems training. Specifically, we identify the explicit logic of user preferences, leverage LLMs to analyze item characteristics and distill user sentiments, and design a logical model to imitate real human engagement. By integrating a statistical model, we further enhance the reliability of the simulation, proposing an ensemble model that synergizes logical and statistical insights for user interaction simulations. Capitalizing on the extensive knowledge and semantic generation capabilities of LLMs, our user simulator faithfully emulates user behaviors and preferences, yielding high-fidelity training data that enrich the training of recommendation algorithms. We establish quantifying and qualifying experiments on five datasets to validate the simulator's effectiveness and stability across various recommendation scenarios.
Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification
Dong, Shi, Niu, Xiaobei, Zhong, Rui, Wang, Zhifeng, Zuo, Mingzhang
Accurate annotation of educational resources is critical in the rapidly advancing field of online education due to the complexity and volume of content. Existing classification methods face challenges with semantic overlap and distribution imbalance of labels in the multi-label context, which impedes effective personalized learning and resource recommendation. This paper introduces RR2QC, a novel Retrieval Reranking method To multi-label Question Classification by leveraging label semantics and meta-label refinement. Firstly, RR2QC leverages semantic relationships within and across label groups to enhance pre-training strategie in multi-label context. Next, a class center learning task is introduced, integrating label texts into downstream training to ensure questions consistently align with label semantics, retrieving the most relevant label sequences. Finally, this method decomposes labels into meta-labels and trains a meta-label classifier to rerank the retrieved label sequences. In doing so, RR2QC enhances the understanding and prediction capability of long-tail labels by learning from meta-labels frequently appearing in other labels. Addtionally, a Math LLM is used to generate solutions for questions, extracting latent information to further refine the model's insights. Experimental results demonstrate that RR2QC outperforms existing classification methods in Precision@k and F1 scores across multiple educational datasets, establishing it as a potent enhancement for online educational content utilization.