Goto

Collaborating Authors

 Zhong, Bineng


End-to-End Human Instance Matting

arXiv.org Artificial Intelligence

Human instance matting aims to estimate an alpha matte for each human instance in an image, which is extremely challenging and has rarely been studied so far. Despite some efforts to use instance segmentation to generate a trimap for each instance and apply trimap-based matting methods, the resulting alpha mattes are often inaccurate due to inaccurate segmentation. In addition, this approach is computationally inefficient due to multiple executions of the matting method. To address these problems, this paper proposes a novel End-to-End Human Instance Matting (E2E-HIM) framework for simultaneous multiple instance matting in a more efficient manner. Specifically, a general perception network first extracts image features and decodes instance contexts into latent codes. Then, a united guidance network exploits spatial attention and semantics embedding to generate united semantics guidance, which encodes the locations and semantic correspondences of all instances. Finally, an instance matting network decodes the image features and united semantics guidance to predict all instance-level alpha mattes. In addition, we construct a large-scale human instance matting dataset (HIM-100K) comprising over 100,000 human images with instance alpha matte labels. Experiments on HIM-100K demonstrate the proposed E2E-HIM outperforms the existing methods on human instance matting with 50% lower errors and 5X faster speed (6 instances in a 640X640 image). Experiments on the PPM-100, RWP-636, and P3M datasets demonstrate that E2E-HIM also achieves competitive performance on traditional human matting.


Long-Range Feature Propagating for Natural Image Matting

arXiv.org Artificial Intelligence

Natural image matting estimates the alpha values of unknown regions in the trimap. Recently, deep learning based methods propagate the alpha values from the known regions to unknown regions according to the similarity between them. However, we find that more than 50\% pixels in the unknown regions cannot be correlated to pixels in known regions due to the limitation of small effective reception fields of common convolutional neural networks, which leads to inaccurate estimation when the pixels in the unknown regions cannot be inferred only with pixels in the reception fields. To solve this problem, we propose Long-Range Feature Propagating Network (LFPNet), which learns the long-range context features outside the reception fields for alpha matte estimation. Specifically, we first design the propagating module which extracts the context features from the downsampled image. Then, we present Center-Surround Pyramid Pooling (CSPP) that explicitly propagates the context features from the surrounding context image patch to the inner center image patch. Finally, we use the matting module which takes the image, trimap and context features to estimate the alpha matte. Experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on the AlphaMatting and Adobe Image Matting datasets.


Representative Task Self-selection for Flexible Clustered Lifelong Learning

arXiv.org Artificial Intelligence

Consider the lifelong learning paradigm whose objective is to learn a sequence of tasks depending on previous experiences, e.g., knowledge library or deep network weights. However, the knowledge libraries or deep networks for most recent lifelong learning models are with prescribed size, and can degenerate the performance for both learned tasks and coming ones when facing with a new task environment (cluster). To address this challenge, we propose a novel incremental clustered lifelong learning framework with two knowledge libraries: feature learning library and model knowledge library, called Flexible Clustered Lifelong Learning (FCL3). Specifically, the feature learning library modeled by an autoencoder architecture maintains a set of representation common across all the observed tasks, and the model knowledge library can be self-selected by identifying and adding new representative models (clusters). When a new task arrives, our proposed FCL3 model firstly transfers knowledge from these libraries to encode the new task, i.e., effectively and selectively soft-assigning this new task to multiple representative models over feature learning library. Then, 1) the new task with a higher outlier probability will then be judged as a new representative, and used to redefine both feature learning library and representative models over time; or 2) the new task with lower outlier probability will only refine the feature learning library. For model optimization, we cast this lifelong learning problem as an alternating direction minimization problem as a new task comes. Finally, we evaluate the proposed framework by analyzing several multi-task datasets, and the experimental results demonstrate that our FCL3 model can achieve better performance than most lifelong learning frameworks, even batch clustered multi-task learning models.


Predictive Local Smoothness for Stochastic Gradient Methods

arXiv.org Machine Learning

Stochastic gradient methods are dominant in nonconvex optimization especially for deep models but have low asymptotical convergence due to the fixed smoothness. To address this problem, we propose a simple yet effective method for improving stochastic gradient methods named predictive local smoothness (PLS). First, we create a convergence condition to build a learning rate which varies adaptively with local smoothness. Second, the local smoothness can be predicted by the latest gradients. Third, we use the adaptive learning rate to update the stochastic gradients for exploring linear convergence rates. By applying the PLS method, we implement new variants of three popular algorithms: PLS-stochastic gradient descent (PLS-SGD), PLS-accelerated SGD (PLS-AccSGD), and PLS-AMSGrad. Moreover, we provide much simpler proofs to ensure their linear convergence. Empirical results show that the variants have better performance gains than the popular algorithms, such as, faster convergence and alleviating explosion and vanish of gradients.