Goto

Collaborating Authors

 Zhilin Yang




Mixtape: Breaking the Softmax Bottleneck Efficiently

Neural Information Processing Systems

The softmax bottleneck has been shown to limit the expressiveness of neural language models. Mixture of Softmaxes (MoS) is an effective approach to address such a theoretical limitation, but are expensive compared to softmax in terms of both memory and time. We propose Mixtape, an output layer that breaks the softmax bottleneck more efficiently with three novel techniques--logit space vector gating, sigmoid tree decomposition, and gate sharing. On four benchmarks including language modeling and machine translation, the Mixtape layer substantially improves the efficiency over the MoS layer by 3.5x to 10.5x while obtaining similar performance. A network equipped with Mixtape is only 20% to 34% slower than a softmax-based network with 10-30K vocabulary sizes, and outperforms softmax in perplexity and translation quality.


XLNet: Generalized Autoregressive Pretraining for Language Understanding

Neural Information Processing Systems

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation.


Mixtape: Breaking the Softmax Bottleneck Efficiently

Neural Information Processing Systems

The softmax bottleneck has been shown to limit the expressiveness of neural language models. Mixture of Softmaxes (MoS) is an effective approach to address such a theoretical limitation, but are expensive compared to softmax in terms of both memory and time. We propose Mixtape, an output layer that breaks the softmax bottleneck more efficiently with three novel techniques--logit space vector gating, sigmoid tree decomposition, and gate sharing. On four benchmarks including language modeling and machine translation, the Mixtape layer substantially improves the efficiency over the MoS layer by 3.5x to 10.5x while obtaining similar performance. A network equipped with Mixtape is only 20% to 34% slower than a softmax-based network with 10-30K vocabulary sizes, and outperforms softmax in perplexity and translation quality.


Review Networks for Caption Generation

Neural Information Processing Systems

We propose a novel extension of the encoder-decoder framework, called a review network. The review network is generic and can enhance any existing encoderdecoder model: in this paper, we consider RNN decoders with both CNN and RNN encoders. The review network performs a number of review steps with attention mechanism on the encoder hidden states, and outputs a thought vector after each review step; the thought vectors are used as the input of the attention mechanism in the decoder. We show that conventional encoder-decoders are a special case of our framework. Empirically, we show that our framework improves over state-ofthe-art encoder-decoder systems on the tasks of image captioning and source code captioning.


Good Semi-supervised Learning That Requires a Bad GAN

Neural Information Processing Systems

Semi-supervised learning methods based on generative adversarial networks (GANs) obtained strong empirical results, but it is not clear 1) how the discriminator benefits from joint training with a generator, and 2) why good semi-supervised classification performance and a good generator cannot be obtained at the same time. Theoretically we show that given the discriminator objective, good semisupervised learning indeed requires a bad generator, and propose the definition of a preferred generator.


GLoMo: Unsupervised Learning of Transferable Relational Graphs

Neural Information Processing Systems

Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However, these approaches usually transfer unary features and largely ignore more structured graphical representations. This work explores the possibility of learning generic latent relational graphs that capture dependencies between pairs of data units (e.g., words or pixels) from large-scale unlabeled data and transferring the graphs to downstream tasks. Our proposed transfer learning framework improves performance on various tasks including question answering, natural language inference, sentiment analysis, and image classification. We also show that the learned graphs are generic enough to be transferred to different embeddings on which the graphs have not been trained (including GloVe embeddings, ELMo embeddings, and task-specific RNN hidden units), or embedding-free units such as image pixels.



Differentiable Learning of Logical Rules for Knowledge Base Reasoning

Neural Information Processing Systems

We study the problem of learning probabilistic first-order logical rules for knowledge base reasoning. This learning problem is difficult because it requires learning the parameters in a continuous space as well as the structure in a discrete space. We propose a framework, Neural Logic Programming, that combines the parameter and structure learning of first-order logical rules in an end-to-end differentiable model. This approach is inspired by a recently-developed differentiable logic called TensorLog [5], where inference tasks can be compiled into sequences of differentiable operations. We design a neural controller system that learns to compose these operations. Empirically, our method outperforms prior work on multiple knowledge base benchmark datasets, including Freebase and WikiMovies.