Zhi, Shuaifeng
A Causal Adjustment Module for Debiasing Scene Graph Generation
Liu, Li, Sun, Shuzhou, Zhi, Shuaifeng, Shi, Fan, Liu, Zhen, Heikkilä, Janne, Liu, Yongxiang
While recent debiasing methods for Scene Graph Generation (SGG) have shown impressive performance, these efforts often attribute model bias solely to the long-tail distribution of relationships, overlooking the more profound causes stemming from skewed object and object pair distributions. In this paper, we employ causal inference techniques to model the causality among these observed skewed distributions. Our insight lies in the ability of causal inference to capture the unobservable causal effects between complex distributions, which is crucial for tracing the roots of model bias. Specifically, we introduce the Mediator-based Causal Chain Model (MCCM), which, in addition to modeling causality among objects, object pairs, and relationships, incorporates mediator variables, i.e., cooccurrence distribution, for complementing the causality. Following this, we propose the Causal Adjustment Module (CAModule) to estimate the modeled causal structure, using variables from MCCM as inputs to produce a set of adjustment factors aimed at correcting biased model predictions. Moreover, our method enables the composition of zero-shot relationships, thereby enhancing the model's ability to recognize such relationships. Experiments conducted across various SGG backbones and popular benchmarks demonstrate that CAModule achieves state-of-the-art mean recall rates, with significant improvements also observed on the challenging zero-shot recall rate metric.
MOSE: Monocular Semantic Reconstruction Using NeRF-Lifted Noisy Priors
Du, Zhenhua, Xu, Binbin, Zhang, Haoyu, Huo, Kai, Zhi, Shuaifeng
Accurately reconstructing dense and semantically annotated 3D meshes from monocular images remains a challenging task due to the lack of geometry guidance and imperfect view-dependent 2D priors. Though we have witnessed recent advancements in implicit neural scene representations enabling precise 2D rendering simply from multi-view images, there have been few works addressing 3D scene understanding with monocular priors alone. In this paper, we propose MOSE, a neural field semantic reconstruction approach to lift inferred image-level noisy priors to 3D, producing accurate semantics and geometry in both 3D and 2D space. The key motivation for our method is to leverage generic class-agnostic segment masks as guidance to promote local consistency of rendered semantics during training. With the help of semantics, we further apply a smoothness regularization to texture-less regions for better geometric quality, thus achieving mutual benefits of geometry and semantics. Experiments on the ScanNet dataset show that our MOSE outperforms relevant baselines across all metrics on tasks of 3D semantic segmentation, 2D semantic segmentation and 3D surface reconstruction.
ROFusion: Efficient Object Detection using Hybrid Point-wise Radar-Optical Fusion
Liu, Liu, Zhi, Shuaifeng, Du, Zhenhua, Liu, Li, Zhang, Xinyu, Huo, Kai, Jiang, Weidong
Radars, due to their robustness to adverse weather conditions and ability to measure object motions, have served in autonomous driving and intelligent agents for years. However, Radar-based perception suffers from its unintuitive sensing data, which lack of semantic and structural information of scenes. To tackle this problem, camera and Radar sensor fusion has been investigated as a trending strategy with low cost, high reliability and strong maintenance. While most recent works explore how to explore Radar point clouds and images, rich contextual information within Radar observation are discarded. In this paper, we propose a hybrid point-wise Radar-Optical fusion approach for object detection in autonomous driving scenarios. The framework benefits from dense contextual information from both the range-doppler spectrum and images which are integrated to learn a multi-modal feature representation. Furthermore, we propose a novel local coordinate formulation, tackling the object detection task in an object-centric coordinate. Extensive results show that with the information gained from optical images, we could achieve leading performance in object detection (97.69% recall) compared to recent state-of-the-art methods FFT-RadNet [17] (82.86% recall). Ablation studies verify the key design choices and practicability of our approach given machine generated imperfect detections.