Zheng, Zhaoheng
Adversarial Demonstration Attacks on Large Language Models
Wang, Jiongxiao, Liu, Zichen, Park, Keun Hee, Jiang, Zhuojun, Zheng, Zhaoheng, Wu, Zhuofeng, Chen, Muhao, Xiao, Chaowei
With the emergence of more powerful large language models (LLMs), such as ChatGPT and GPT-4, in-context learning (ICL) has gained significant prominence in leveraging these models for specific tasks by utilizing data-label pairs as precondition prompts. While incorporating demonstrations can greatly enhance the performance of LLMs across various tasks, it may introduce a new security concern: attackers can manipulate only the demonstrations without changing the input to perform an attack. In this paper, we investigate the security concern of ICL from an adversarial perspective, focusing on the impact of demonstrations. We propose a novel attack method named advICL, which aims to manipulate only the demonstration without changing the input to mislead the models. Our results demonstrate that as the number of demonstrations increases, the robustness of in-context learning would decrease. Additionally, we also identify the intrinsic property of the demonstrations is that they can be used (prepended) with different inputs. As a result, it introduces a more practical threat model in which an attacker can attack the test input example even without knowing and manipulating it. To achieve it, we propose the transferable version of advICL, named Transferable-advICL. Our experiment shows that the adversarial demonstration generated by Transferable-advICL can successfully attack the unseen test input examples. We hope that our study reveals the critical security risks associated with ICL and underscores the need for extensive research on the robustness of ICL, particularly given its increasing significance in the advancement of LLMs.
MoMo: A shared encoder Model for text, image and multi-Modal representations
Chada, Rakesh, Zheng, Zhaoheng, Natarajan, Pradeep
We propose a self-supervised shared encoder model that achieves strong results on several visual, language and multimodal benchmarks while being data, memory and run-time efficient. We make three key contributions. First, in contrast to most existing works, we use a single transformer with all the encoder layers processing both the text and the image modalities. Second, we propose a stage-wise training strategy where the model is first trained on images, then jointly with unimodal text and image datasets and finally jointly with text and text-image datasets. Third, to preserve information across both the modalities, we propose a training pipeline that learns simultaneously from gradient updates of different modalities at each training update step. The results on downstream text-only, image-only and multimodal tasks show that our model is competitive with several strong models while using fewer parameters and lesser pre-training data. For example, MoMo performs competitively with FLAVA on multimodal (+3.1), image-only (+1.1) and text-only (-0.1) tasks despite having 2/5th the number of parameters and using 1/3rd the image-text training pairs. Finally, we ablate various design choices and further show that increasing model size produces significant performance gains indicating potential for substantial improvements with larger models using our approach.