Goto

Collaborating Authors

 Zheng, Yufeng


LOLA: LLM-Assisted Online Learning Algorithm for Content Experiments

arXiv.org Machine Learning

In the rapidly evolving digital content landscape, media firms and news publishers require automated and efficient methods to enhance user engagement. This paper introduces the LLM-Assisted Online Learning Algorithm (LOLA), a novel framework that integrates Large Language Models (LLMs) with adaptive experimentation to optimize content delivery. Leveraging a large-scale dataset from Upworthy, which includes 17,681 headline A/B tests aimed at evaluating the performance of various headlines associated with the same article content, we first investigate three broad pure-LLM approaches: prompt-based methods, embedding-based classification models, and fine-tuned open-source LLMs. Our findings indicate that prompt-based approaches perform poorly, achieving no more than 65% accuracy in identifying the catchier headline among two options. In contrast, OpenAI-embedding-based classification models and fine-tuned Llama-3-8b models achieve comparable accuracy, around 82-84%, though still falling short of the performance of experimentation with sufficient traffic. We then introduce LOLA, which combines the best pure-LLM approach with the Upper Confidence Bound algorithm to adaptively allocate traffic and maximize clicks. Our numerical experiments on Upworthy data show that LOLA outperforms the standard A/B testing method (the current status quo at Upworthy), pure bandit algorithms, and pure-LLM approaches, particularly in scenarios with limited experimental traffic or numerous arms. Our approach is both scalable and broadly applicable to content experiments across a variety of digital settings where firms seek to optimize user engagement, including digital advertising and social media recommendations.


An Adaptive Deep RL Method for Non-Stationary Environments with Piecewise Stable Context

arXiv.org Artificial Intelligence

One of the key challenges in deploying RL to real-world applications is to adapt to variations of unknown environment contexts, such as changing terrains in robotic tasks and fluctuated bandwidth in congestion control. Existing works on adaptation to unknown environment contexts either assume the contexts are the same for the whole episode or assume the context variables are Markovian. However, in many real-world applications, the environment context usually stays stable for a stochastic period and then changes in an abrupt and unpredictable manner within an episode, resulting in a segment structure, which existing works fail to address. To leverage the segment structure of piecewise stable context in real-world applications, in this paper, we propose a Segmented Context Belief Augmented Deep (SeCBAD) RL method. Our method can jointly infer the belief distribution over latent context with the posterior over segment length and perform more accurate belief context inference with observed data within the current context segment. The inferred belief context can be leveraged to augment the state, leading to a policy that can adapt to abrupt variations in context. We demonstrate empirically that SeCBAD can infer context segment length accurately and outperform existing methods on a toy grid world environment and MuJoCo tasks with piecewise-stable context.


Doubly Stochastic Generative Arrivals Modeling

arXiv.org Machine Learning

We propose a new framework named DS-WGAN that integrates the doubly stochastic (DS) structure and the Wasserstein generative adversarial networks (WGAN) to model, estimate, and simulate a wide class of arrival processes with non-stationary and stochastic arrival rates. We prove statistical consistency for the estimator solved by the DS-WGAN framework. We then discuss and address challenges from the computational aspect in the model estimation procedures. We show that the DS-WGAN framework can facilitate what-if simulation and predictive simulation for scenarios that have never happened before in the historical data. Numerical experiments with synthetic and real data sets are implemented to demonstrate the performance of DS-WGAN, both from a statistical perspective and from an operational performance evaluation perspective. Numerical experiments suggest that the successful model estimation for DS-WGAN only requires a moderate size of data, which can be appealing in the contexts of operational management.