Goto

Collaborating Authors

 Zheng, Yuanhang


How Good are LLMs at Relation Extraction under Low-Resource Scenario? Comprehensive Evaluation

arXiv.org Artificial Intelligence

Relation Extraction (RE) serves as a crucial technology for transforming unstructured text into structured information, especially within the framework of Knowledge Graph development. Its importance is emphasized by its essential role in various downstream tasks. Besides the conventional RE methods which are based on neural networks and pre-trained language models, large language models (LLMs) are also utilized in the research field of RE. However, on low-resource languages (LRLs), both conventional RE methods and LLM-based methods perform poorly on RE due to the data scarcity issues. To this end, this paper constructs low-resource relation extraction datasets in 10 LRLs in three regions (Central Asia, Southeast Asia and Middle East). The corpora are constructed by translating the original publicly available English RE datasets (NYT10, FewRel and CrossRE) using an effective multilingual machine translation. Then, we use the language perplexity (PPL) to filter out the low-quality data from the translated datasets. Finally, we conduct an empirical study and validate the performance of several open-source LLMs on these generated LRL RE datasets.


Budget-Constrained Tool Learning with Planning

arXiv.org Artificial Intelligence

Despite intensive efforts devoted to tool learning, the problem of budget-constrained tool learning, which focuses on resolving user queries within a specific budget constraint, has been widely overlooked. This paper proposes a novel method for budget-constrained tool learning. Our approach involves creating a preferable plan under the budget constraint before utilizing the tools. This plan outlines the feasible tools and the maximum number of times they can be employed, offering a comprehensive overview of the tool learning process for large language models. This allows them to allocate the budget from a broader perspective. To devise the plan without incurring significant extra costs, we suggest initially estimating the usefulness of the candidate tools based on past experience. Subsequently, we employ dynamic programming to formulate the plan. Experimental results demonstrate that our method can be integrated with various tool learning methods, significantly enhancing their effectiveness under strict budget constraints.


Improving Cross-lingual Representation for Semantic Retrieval with Code-switching

arXiv.org Artificial Intelligence

Semantic Retrieval (SR) has become an indispensable part of the FAQ system in the task-oriented question-answering (QA) dialogue scenario. The demands for a cross-lingual smart-customer-service system for an e-commerce platform or some particular business conditions have been increasing recently. Most previous studies exploit cross-lingual pre-trained models (PTMs) for multi-lingual knowledge retrieval directly, while some others also leverage the continual pre-training before fine-tuning PTMs on the downstream tasks. However, no matter which schema is used, the previous work ignores to inform PTMs of some features of the downstream task, i.e. train their PTMs without providing any signals related to SR. To this end, in this work, we propose an Alternative Cross-lingual PTM for SR via code-switching. We are the first to utilize the code-switching approach for cross-lingual SR. Besides, we introduce the novel code-switched continual pre-training instead of directly using the PTMs on the SR tasks. The experimental results show that our proposed approach consistently outperforms the previous SOTA methods on SR and semantic textual similarity (STS) tasks with three business corpora and four open datasets in 20+ languages.


Black-box Prompt Tuning with Subspace Learning

arXiv.org Artificial Intelligence

Black-box prompt tuning uses derivative-free optimization algorithms to learn prompts in low-dimensional subspaces instead of back-propagating through the network of Large Language Models (LLMs). Recent studies have found that black-box prompt tuning lacks versatility across tasks and LLMs, which we believe is related to the inappropriate choice of subspaces. In this paper, we propose Black-box prompt tuning with Subspace Learning (BSL) to improve the versatility of black-box prompt tuning. Based on the assumption that nearly optimal prompts for similar tasks exist in a common subspace, we propose identifying such subspaces by meta-learning on a set of similar source tasks. Therefore, for a target task that shares similarities with source tasks, we guarantee that optimizing in the subspace can find a prompt that performs well on the target task. Experiments confirm that our BSL framework consistently achieves competitive performance regardless of downstream tasks and LLMs.