Zheng, Yandan
HyperGraphRAG: Retrieval-Augmented Generation with Hypergraph-Structured Knowledge Representation
Luo, Haoran, E, Haihong, Chen, Guanting, Zheng, Yandan, Wu, Xiaobao, Guo, Yikai, Lin, Qika, Feng, Yu, Kuang, Zemin, Song, Meina, Zhu, Yifan, Tuan, Luu Anh
While standard Retrieval-Augmented Generation (RAG) based on chunks, GraphRAG structures knowledge as graphs to leverage the relations among entities. However, previous GraphRAG methods are limited by binary relations: one edge in the graph only connects two entities, which cannot well model the n-ary relations among more than two entities that widely exist in reality. To address this limitation, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, modeling the complicated n-ary relations in the real world. To retrieve and generate over hypergraphs, we introduce a complete pipeline with a hypergraph construction method, a hypergraph retrieval strategy, and a hypergraph-guided generation mechanism. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms standard RAG and GraphRAG in accuracy and generation quality.
Jointprop: Joint Semi-supervised Learning for Entity and Relation Extraction with Heterogeneous Graph-based Propagation
Zheng, Yandan, Hao, Anran, Luu, Anh Tuan
Semi-supervised learning has been an important approach to address challenges in extracting entities and relations from limited data. However, current semi-supervised works handle the two tasks (i.e., Named Entity Recognition and Relation Extraction) separately and ignore the cross-correlation of entity and relation instances as well as the existence of similar instances across unlabeled data. To alleviate the issues, we propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction, which captures the global structure information between individual tasks and exploits interactions within unlabeled data. Specifically, we construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores. We then employ a propagation learning scheme to leverage the affinities between labelled and unlabeled samples. Experiments on benchmark datasets show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks. We show that the joint semi-supervised learning of the two tasks benefits from their codependency and validates the importance of utilizing the shared information between unlabeled data.