Goto

Collaborating Authors

 Zheng, Xun


Learning Sparse Nonparametric DAGs

arXiv.org Machine Learning

We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data. Our approach is based on a recent algebraic characterization of DAGs that led to the first fully continuous optimization for score-based learning of DAG models parametrized by a linear structural equation model (SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index models as special cases. We also explore the use of neural networks and orthogonal basis expansions to model nonlinearities for general nonparametric models. Extensive empirical study confirms the necessity of nonlinear dependency and the advantage of continuous optimization for score-based learning.


DAGs with NO TEARS: Continuous Optimization for Structure Learning

Neural Information Processing Systems

Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: we formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree.


DAGs with NO TEARS: Continuous Optimization for Structure Learning

Neural Information Processing Systems

Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: we formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree.


Learning Tensor Latent Features

arXiv.org Machine Learning

Compared to the classic latent factor models [14], latent feature models have two main benefits: (1) interpretablity: the binary codes directly reveal whether certain features exist in the data, thus provide more interpretable latent profiles [25]; (2) scalability: compared with real-valued codes, binary codes require fewer bits to store, thereby cutting down the memory footprint, making it easier to deploy into memory constrained environments such as mobile devices. Tensor latent feature models generalize traditional matrix latent feature models to represent high-order correlation structures in the data. For example, in spatiotemporal recommender systems, the observations are user activities over different locations and time. We want to learn the latent features and codes that correspond to user, space and time simultaneously without assuming conditional independence of these three dimensions. In this case, we can first represent such data as a high-order tensor and assign binary codes encoding presence or absence of rows for individual modes of the tensor. These codes can then help us answer the "when" and "where" questions regarding the learned user preferences. Besides the non-convex formulation of the maximum likelihood estimation (MLE) objective, learning latent feature models is further complicated by the combinatorial nature of the codes.


DAGs with NO TEARS: Smooth Optimization for Structure Learning

arXiv.org Machine Learning

Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint and are not well-suited to general purpose optimization packages for their solution. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a smooth, constrained optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting nonconvex, constrained program involves smooth functions whose gradients are easy to compute and only involve elementary matrix operations. By using existing black-box optimization routines, our method uses global search to find an optimal DAG and can be implemented in about 50 lines of Python and outperforms existing methods without imposing any structural constraints.


State Space LSTM Models with Particle MCMC Inference

arXiv.org Machine Learning

Long Short-Term Memory (LSTM) is one of the most powerful sequence models. Despite the strong performance, however, it lacks the nice interpretability as in state space models. In this paper, we present a way to combine the best of both worlds by introducing State Space LSTM (SSL) models that generalizes the earlier work \cite{zaheer2017latent} of combining topic models with LSTM. However, unlike \cite{zaheer2017latent}, we do not make any factorization assumptions in our inference algorithm. We present an efficient sampler based on sequential Monte Carlo (SMC) method that draws from the joint posterior directly. Experimental results confirms the superiority and stability of this SMC inference algorithm on a variety of domains.


Petuum: A New Platform for Distributed Machine Learning on Big Data

arXiv.org Machine Learning

What is a systematic way to efficiently apply a wide spectrum of advanced ML programs to industrial scale problems, using Big Models (up to 100s of billions of parameters) on Big Data (up to terabytes or petabytes)? Modern parallelization strategies employ fine-grained operations and scheduling beyond the classic bulk-synchronous processing paradigm popularized by MapReduce, or even specialized graph-based execution that relies on graph representations of ML programs. The variety of approaches tends to pull systems and algorithms design in different directions, and it remains difficult to find a universal platform applicable to a wide range of ML programs at scale. We propose a general-purpose framework that systematically addresses data- and model-parallel challenges in large-scale ML, by observing that many ML programs are fundamentally optimization-centric and admit error-tolerant, iterative-convergent algorithmic solutions. This presents unique opportunities for an integrative system design, such as bounded-error network synchronization and dynamic scheduling based on ML program structure. We demonstrate the efficacy of these system designs versus well-known implementations of modern ML algorithms, allowing ML programs to run in much less time and at considerably larger model sizes, even on modestly-sized compute clusters.


On Model Parallelization and Scheduling Strategies for Distributed Machine Learning

Neural Information Processing Systems

Distributed machine learning has typically been approached from a data parallel perspective, where big data are partitioned to multiple workers and an algorithm is executed concurrently over different data subsets under various synchronization schemes to ensure speed-up and/or correctness. A sibling problem that has received relatively less attention is how to ensure efficient and correct model parallel execution of ML algorithms, where parameters of an ML program are partitioned to different workers and undergone concurrent iterative updates. We argue that model and data parallelisms impose rather different challenges for system design, algorithmic adjustment, and theoretical analysis. In this paper, we develop a system for model-parallelism, STRADS, that provides a programming abstraction for scheduling parameter updates by discovering and leveraging changing structural properties of ML programs. STRADS enables a flexible tradeoff between scheduling efficiency and fidelity to intrinsic dependencies within the models, and improves memory efficiency of distributed ML. We demonstrate the efficacy of model-parallel algorithms implemented on STRADS versus popular implementations for topic modeling, matrix factorization, and Lasso.


LightLDA: Big Topic Models on Modest Compute Clusters

arXiv.org Machine Learning

When building large-scale machine learning (ML) programs, such as big topic models or deep neural nets, one usually assumes such tasks can only be attempted with industrial-sized clusters with thousands of nodes, which are out of reach for most practitioners or academic researchers. We consider this challenge in the context of topic modeling on web-scale corpora, and show that with a modest cluster of as few as 8 machines, we can train a topic model with 1 million topics and a 1-million-word vocabulary (for a total of 1 trillion parameters), on a document collection with 200 billion tokens -- a scale not yet reported even with thousands of machines. Our major contributions include: 1) a new, highly efficient O(1) Metropolis-Hastings sampling algorithm, whose running cost is (surprisingly) agnostic of model size, and empirically converges nearly an order of magnitude faster than current state-of-the-art Gibbs samplers; 2) a structure-aware model-parallel scheme, which leverages dependencies within the topic model, yielding a sampling strategy that is frugal on machine memory and network communication; 3) a differential data-structure for model storage, which uses separate data structures for high- and low-frequency words to allow extremely large models to fit in memory, while maintaining high inference speed; and 4) a bounded asynchronous data-parallel scheme, which allows efficient distributed processing of massive data via a parameter server. Our distribution strategy is an instance of the model-and-data-parallel programming model underlying the Petuum framework for general distributed ML, and was implemented on top of the Petuum open-source system. We provide experimental evidence showing how this development puts massive models within reach on a small cluster while still enjoying proportional time cost reductions with increasing cluster size, in comparison with alternative options.


Model-Parallel Inference for Big Topic Models

arXiv.org Machine Learning

In real world industrial applications of topic modeling, the ability to capture gigantic conceptual space by learning an ultra-high dimensional topical representation, i.e., the so-called "big model", is becoming the next desideratum after enthusiasms on "big data", especially for fine-grained downstream tasks such as online advertising, where good performances are usually achieved by regression-based predictors built on millions if not billions of input features. The conventional data-parallel approach for training gigantic topic models turns out to be rather inefficient in utilizing the power of parallelism, due to the heavy dependency on a centralized image of "model". Big model size also poses another challenge on the storage, where available model size is bounded by the smallest RAM of nodes. To address these issues, we explore another type of parallelism, namely model-parallelism, which enables training of disjoint blocks of a big topic model in parallel. By integrating data-parallelism with model-parallelism, we show that dependencies between distributed elements can be handled seamlessly, achieving not only faster convergence but also an ability to tackle significantly bigger model size. We describe an architecture for model-parallel inference of LDA, and present a variant of collapsed Gibbs sampling algorithm tailored for it. Experimental results demonstrate the ability of this system to handle topic modeling with unprecedented amount of 200 billion model variables only on a low-end cluster with very limited computational resources and bandwidth.