Zheng, Xiangyu
SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines
Team, M-A-P, Du, Xinrun, Yao, Yifan, Ma, Kaijing, Wang, Bingli, Zheng, Tianyu, Zhu, Kang, Liu, Minghao, Liang, Yiming, Jin, Xiaolong, Wei, Zhenlin, Zheng, Chujie, Deng, Kaixin, Jia, Shian, Jiang, Sichao, Liao, Yiyan, Li, Rui, Li, Qinrui, Li, Sirun, Li, Yizhi, Li, Yunwen, Ma, Dehua, Ni, Yuansheng, Que, Haoran, Wang, Qiyao, Wen, Zhoufutu, Wu, Siwei, Xing, Tianshun, Xu, Ming, Yang, Zhenzhu, Wang, Zekun Moore, Zhou, Junting, Bai, Yuelin, Bu, Xingyuan, Cai, Chenglin, Chen, Liang, Chen, Yifan, Cheng, Chengtuo, Cheng, Tianhao, Ding, Keyi, Huang, Siming, Huang, Yun, Li, Yaoru, Li, Yizhe, Li, Zhaoqun, Liang, Tianhao, Lin, Chengdong, Lin, Hongquan, Ma, Yinghao, Pang, Tianyang, Peng, Zhongyuan, Peng, Zifan, Qi, Qige, Qiu, Shi, Qu, Xingwei, Quan, Shanghaoran, Tan, Yizhou, Wang, Zili, Wang, Chenqing, Wang, Hao, Wang, Yiya, Wang, Yubo, Xu, Jiajun, Yang, Kexin, Yuan, Ruibin, Yue, Yuanhao, Zhan, Tianyang, Zhang, Chun, Zhang, Jinyang, Zhang, Xiyue, Zhang, Xingjian, Zhang, Yue, Zhao, Yongchi, Zheng, Xiangyu, Zhong, Chenghua, Gao, Yang, Li, Zhoujun, Liu, Dayiheng, Liu, Qian, Liu, Tianyu, Ni, Shiwen, Peng, Junran, Qin, Yujia, Su, Wenbo, Wang, Guoyin, Wang, Shi, Yang, Jian, Yang, Min, Cao, Meng, Yue, Xiang, Zhang, Zhaoxiang, Zhou, Wangchunshu, Liu, Jiaheng, Lin, Qunshu, Huang, Wenhao, Zhang, Ge
Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.
UTBoost: A Tree-boosting based System for Uplift Modeling
Gao, Junjie, Zheng, Xiangyu, Wang, DongDong, Huang, Zhixiang, Zheng, Bangqi, Yang, Kai
Uplift modeling refers to the set of machine learning techniques that a manager may use to estimate customer uplift, that is, the net effect of an action on some customer outcome. By identifying the subset of customers for whom a treatment will have the greatest effect, uplift models assist decision-makers in optimizing resource allocations and maximizing overall returns. Accurately estimating customer uplift poses practical challenges, as it requires assessing the difference between two mutually exclusive outcomes for each individual. In this paper, we propose two innovative adaptations of the well-established Gradient Boosting Decision Trees (GBDT) algorithm, which learn the causal effect in a sequential way and overcome the counter-factual nature. Both approaches innovate existing techniques in terms of ensemble learning method and learning objectives, respectively. Experiments on large-scale datasets demonstrate the usefulness of the proposed methods, which often yielding remarkable improvements over base models. To facilitate the application, we develop the UTBoost, an end-to-end tree boosting system specifically designed for uplift modeling. The package is open source and has been optimized for training speed to meet the needs of real industrial applications.
Causally Invariant Predictor with Shift-Robustness
Zheng, Xiangyu, Sun, Xinwei, Chen, Wei, Liu, Tie-Yan
This paper proposes an invariant causal predictor that is robust to distribution shift across domains and maximally reserves the transferable invariant information. Based on a disentangled causal factorization, we formulate the distribution shift as soft interventions in the system, which covers a wide range of cases for distribution shift as we do not make prior specifications on the causal structure or the intervened variables. Instead of imposing regularizations to constrain the invariance of the predictor, we propose to predict by the intervened conditional expectation based on the do-operator and then prove that it is invariant across domains. More importantly, we prove that the proposed predictor is the robust predictor that minimizes the worst-case quadratic loss among the distributions of all domains. For empirical learning, we propose an intuitive and flexible estimating method based on data regeneration and present a local causal discovery procedure to guide the regeneration step. The key idea is to regenerate data such that the regenerated distribution is compatible with the intervened graph, which allows us to incorporate standard supervised learning methods with the regenerated data. Experimental results on both synthetic and real data demonstrate the efficacy of our predictor in improving the predictive accuracy and robustness across domains.
Latent Causal Invariant Model
Sun, Xinwei, Wu, Botong, Liu, Chang, Zheng, Xiangyu, Chen, Wei, Qin, Tao, Liu, Tie-yan
Current supervised learning can learn spurious correlation during the data-fitting process, imposing issues regarding interpretability, out-of-distribution (OOD) generalization, and robustness. To avoid spurious correlation, we propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction. Specifically, we introduce latent variables that are separated into (a) output-causative factors and (b) others that are spuriously correlated to the output via confounders, to model the underlying causal factors. We further assume the generating mechanisms from latent space to observed data to be causally invariant. We give the identifiable claim of such invariance, particularly the disentanglement of output-causative factors from others, as a theoretical guarantee for precise inference and avoiding spurious correlation. We propose a Variational-Bayesian-based method for estimation and to optimize over the latent space for prediction. The utility of our approach is verified by improved interpretability, prediction power on various OOD scenarios (including healthcare) and robustness on security.