Zheng, Wei-Shi
Rethinking Bimanual Robotic Manipulation: Learning with Decoupled Interaction Framework
Jiang, Jian-Jian, Wu, Xiao-Ming, He, Yi-Xiang, Zeng, Ling-An, Wei, Yi-Lin, Zhang, Dandan, Zheng, Wei-Shi
Bimanual robotic manipulation is an emerging and critical topic in the robotics community. Previous works primarily rely on integrated control models that take the perceptions and states of both arms as inputs to directly predict their actions. However, we think bimanual manipulation involves not only coordinated tasks but also various uncoordinated tasks that do not require explicit cooperation during execution, such as grasping objects with the closest hand, which integrated control frameworks ignore to consider due to their enforced cooperation in the early inputs. In this paper, we propose a novel decoupled interaction framework that considers the characteristics of different tasks in bimanual manipulation. The key insight of our framework is to assign an independent model to each arm to enhance the learning of uncoordinated tasks, while introducing a selective interaction module that adaptively learns weights from its own arm to improve the learning of coordinated tasks. Extensive experiments on seven tasks in the RoboTwin dataset demonstrate that: (1) Our framework achieves outstanding performance, with a 23.5% boost over the SOTA method. (2) Our framework is flexible and can be seamlessly integrated into existing methods. (3) Our framework can be effectively extended to multi-agent manipulation tasks, achieving a 28% boost over the integrated control SOTA. (4) The performance boost stems from the decoupled design itself, surpassing the SOTA by 16.5% in success rate with only 1/6 of the model size.
AffordDexGrasp: Open-set Language-guided Dexterous Grasp with Generalizable-Instructive Affordance
Wei, Yi-Lin, Lin, Mu, Lin, Yuhao, Jiang, Jian-Jian, Wu, Xiao-Ming, Zeng, Ling-An, Zheng, Wei-Shi
Language-guided robot dexterous generation enables robots to grasp and manipulate objects based on human commands. However, previous data-driven methods are hard to understand intention and execute grasping with unseen categories in the open set. In this work, we explore a new task, Open-set Language-guided Dexterous Grasp, and find that the main challenge is the huge gap between high-level human language semantics and low-level robot actions. To solve this problem, we propose an Affordance Dexterous Grasp (AffordDexGrasp) framework, with the insight of bridging the gap with a new generalizable-instructive affordance representation. This affordance can generalize to unseen categories by leveraging the object's local structure and category-agnostic semantic attributes, thereby effectively guiding dexterous grasp generation. Built upon the affordance, our framework introduces Affordacne Flow Matching (AFM) for affordance generation with language as input, and Grasp Flow Matching (GFM) for generating dexterous grasp with affordance as input. To evaluate our framework, we build an open-set table-top language-guided dexterous grasp dataset. Extensive experiments in the simulation and real worlds show that our framework surpasses all previous methods in open-set generalization.
iManip: Skill-Incremental Learning for Robotic Manipulation
Zheng, Zexin, Cai, Jia-Feng, Wu, Xiao-Ming, Wei, Yi-Lin, Tang, Yu-Ming, Zheng, Wei-Shi
The development of a generalist agent with adaptive multiple manipulation skills has been a long-standing goal in the robotics community. In this paper, we explore a crucial task, skill-incremental learning, in robotic manipulation, which is to endow the robots with the ability to learn new manipulation skills based on the previous learned knowledge without re-training. First, we build a skill-incremental environment based on the RLBench benchmark, and explore how traditional incremental methods perform in this setting. We find that they suffer from severe catastrophic forgetting due to the previous methods on classification overlooking the characteristics of temporality and action complexity in robotic manipulation tasks. Towards this end, we propose an incremental Manip}ulation framework, termed iManip, to mitigate the above issues. We firstly design a temporal replay strategy to maintain the integrity of old skills when learning new skill. Moreover, we propose the extendable PerceiverIO, consisting of an action prompt with extendable weight to adapt to new action primitives in new skill. Extensive experiments show that our framework performs well in Skill-Incremental Learning. Codes of the skill-incremental environment with our framework will be open-source.
Task-Oriented 6-DoF Grasp Pose Detection in Clutters
Wang, An-Lan, Chen, Nuo, Lin, Kun-Yu, Yuan-Ming, Li, Zheng, Wei-Shi
T ask-Oriented 6-DoF Grasp Pose Detection in Clutters An-Lan Wang 1,, Nuo Chen 1,, Kun-Y u Lin 1, Y uan-Ming Li 1 and Wei-Shi Zheng 1,2,null Abstract -- In general, humans would grasp an object differently for different tasks, e.g., "grasping the handle of a knife to cut" vs. "grasping the blade to hand over". In the field of robotic grasp pose detection research, some existing works consider this task-oriented grasping and made some progress, but they are generally constrained by low-DoF gripper type or non-cluttered setting, which is not applicable for human assistance in real life. With an aim to get more general and practical grasp models, in this paper, we investigate the problem named Task-Oriented 6-DoF Grasp Pose Detection in Clutters (TO6DGC), which extends the task-oriented problem to a more general 6-DOF Grasp Pose Detection in Cluttered (multi-object) scenario. T o this end, we construct a large-scale 6-DoF task-oriented grasping dataset, 6-DoF T ask Grasp (6DTG), which features 4391 cluttered scenes with over 2 million 6-DoF grasp poses. Each grasp is annotated with a specific task, involving 6 tasks and 198 objects in total. Moreover, we propose One-Stage T askGrasp (OSTG), a strong baseline to address the TO6DGC problem. Our OSTG adopts a task-oriented point selection strategy to detect where to grasp, and a task-oriented grasp generation module to decide how to grasp given a specific task. T o evaluate the effectiveness of OSTG, extensive experiments are conducted on 6DTG. The results show that our method outperforms various baselines on multiple metrics.
MaintaAvatar: A Maintainable Avatar Based on Neural Radiance Fields by Continual Learning
Gu, Shengbo, Qiu, Yu-Kun, Tang, Yu-Ming, Wu, Ancong, Zheng, Wei-Shi
The generation of a virtual digital avatar is a crucial research topic in the field of computer vision. Many existing works utilize Neural Radiance Fields (NeRF) to address this issue and have achieved impressive results. However, previous works assume the images of the training person are available and fixed while the appearances and poses of a subject could constantly change and increase in real-world scenarios. How to update the human avatar but also maintain the ability to render the old appearance of the person is a practical challenge. One trivial solution is to combine the existing virtual avatar models based on NeRF with continual learning methods. However, there are some critical issues in this approach: learning new appearances and poses can cause the model to forget past information, which in turn leads to a degradation in the rendering quality of past appearances, especially color bleeding issues, and incorrect human body poses. In this work, we propose a maintainable avatar (MaintaAvatar) based on neural radiance fields by continual learning, which resolves the issues by utilizing a Global-Local Joint Storage Module and a Pose Distillation Module. Overall, our model requires only limited data collection to quickly fine-tune the model while avoiding catastrophic forgetting, thus achieving a maintainable virtual avatar. The experimental results validate the effectiveness of our MaintaAvatar model.
FodFoM: Fake Outlier Data by Foundation Models Creates Stronger Visual Out-of-Distribution Detector
Chen, Jiankang, Deng, Ling, Gan, Zhiyong, Zheng, Wei-Shi, Wang, Ruixuan
Out-of-Distribution (OOD) detection is crucial when deploying machine learning models in open-world applications. The core challenge in OOD detection is mitigating the model's overconfidence on OOD data. While recent methods using auxiliary outlier datasets or synthesizing outlier features have shown promising OOD detection performance, they are limited due to costly data collection or simplified assumptions. In this paper, we propose a novel OOD detection framework FodFoM that innovatively combines multiple foundation models to generate two types of challenging fake outlier images for classifier training. The first type is based on BLIP-2's image captioning capability, CLIP's vision-language knowledge, and Stable Diffusion's image generation ability. Jointly utilizing these foundation models constructs fake outlier images which are semantically similar to but different from in-distribution (ID) images. For the second type, GroundingDINO's object detection ability is utilized to help construct pure background images by blurring foreground ID objects in ID images. The proposed framework can be flexibly combined with multiple existing OOD detection methods. Extensive empirical evaluations show that image classifiers with the help of constructed fake images can more accurately differentiate real OOD images from ID ones. New state-of-the-art OOD detection performance is achieved on multiple benchmarks. The code is available at \url{https://github.com/Cverchen/ACMMM2024-FodFoM}.
TagFog: Textual Anchor Guidance and Fake Outlier Generation for Visual Out-of-Distribution Detection
Chen, Jiankang, Zhang, Tong, Zheng, Wei-Shi, Wang, Ruixuan
Out-of-distribution (OOD) detection is crucial in many real-world applications. However, intelligent models are often trained solely on in-distribution (ID) data, leading to overconfidence when misclassifying OOD data as ID classes. In this study, we propose a new learning framework which leverage simple Jigsaw-based fake OOD data and rich semantic embeddings (`anchors') from the ChatGPT description of ID knowledge to help guide the training of the image encoder. The learning framework can be flexibly combined with existing post-hoc approaches to OOD detection, and extensive empirical evaluations on multiple OOD detection benchmarks demonstrate that rich textual representation of ID knowledge and fake OOD knowledge can well help train a visual encoder for OOD detection. With the learning framework, new state-of-the-art performance was achieved on all the benchmarks. The code is available at \url{https://github.com/Cverchen/TagFog}.
Real-to-Sim Grasp: Rethinking the Gap between Simulation and Real World in Grasp Detection
Cai, Jia-Feng, Chen, Zibo, Wu, Xiao-Ming, Jiang, Jian-Jian, Wei, Yi-Lin, Zheng, Wei-Shi
For 6-DoF grasp detection, simulated data is expandable to train more powerful model, but it faces the challenge of the large gap between simulation and real world. Previous works bridge this gap with a sim-to-real way. However, this way explicitly or implicitly forces the simulated data to adapt to the noisy real data when training grasp detectors, where the positional drift and structural distortion within the camera noise will harm the grasp learning. In this work, we propose a Real-to-Sim framework for 6-DoF Grasp detection, named R2SGrasp, with the key insight of bridging this gap in a real-to-sim way, which directly bypasses the camera noise in grasp detector training through an inference-time real-to-sim adaption. To achieve this real-to-sim adaptation, our R2SGrasp designs the Real-to-Sim Data Repairer (R2SRepairer) to mitigate the camera noise of real depth maps in data-level, and the Real-to-Sim Feature Enhancer (R2SEnhancer) to enhance real features with precise simulated geometric primitives in feature-level. To endow our framework with the generalization ability, we construct a large-scale simulated dataset cost-efficiently to train our grasp detector, which includes 64,000 RGB-D images with 14.4 million grasp annotations. Sufficient experiments show that R2SGrasp is powerful and our real-to-sim perspective is effective. The real-world experiments further show great generalization ability of R2SGrasp. Project page is available on https://isee-laboratory.github.io/R2SGrasp.
EgoExo-Fitness: Towards Egocentric and Exocentric Full-Body Action Understanding
Li, Yuan-Ming, Huang, Wei-Jin, Wang, An-Lan, Zeng, Ling-An, Meng, Jing-Ke, Zheng, Wei-Shi
We present EgoExo-Fitness, a new full-body action understanding dataset, featuring fitness sequence videos recorded from synchronized egocentric and fixed exocentric (third-person) cameras. Compared with existing full-body action understanding datasets, EgoExo-Fitness not only contains videos from first-person perspectives, but also provides rich annotations. Specifically, two-level temporal boundaries are provided to localize single action videos along with sub-steps of each action. More importantly, EgoExo-Fitness introduces innovative annotations for interpretable action judgement--including technical keypoint verification, natural language comments on action execution, and action quality scores. Combining all of these, EgoExo-Fitness provides new resources to study egocentric and exocentric full-body action understanding across dimensions of "what", "when", and "how well". To facilitate research on egocentric and exocentric full-body action understanding, we construct benchmarks on a suite of tasks (i.e., action classification, action localization, cross-view sequence verification, cross-view skill determination, and a newly proposed task of guidance-based execution verification), together with detailed analysis. Code and data will be available at https://github.com/iSEE-Laboratory/EgoExo-Fitness/tree/main.
An Economic Framework for 6-DoF Grasp Detection
Wu, Xiao-Ming, Cai, Jia-Feng, Jiang, Jian-Jian, Zheng, Dian, Wei, Yi-Lin, Zheng, Wei-Shi
Robotic grasping in clutters is a fundamental task in robotic manipulation. In this work, we propose an economic framework for 6-DoF grasp detection, aiming to economize the resource cost in training and meanwhile maintain effective grasp performance. To begin with, we discover that the dense supervision is the bottleneck of current SOTA methods that severely encumbers the entire training overload, meanwhile making the training difficult to converge. To solve the above problem, we first propose an economic supervision paradigm for efficient and effective grasping. This paradigm includes a well-designed supervision selection strategy, selecting key labels basically without ambiguity, and an economic pipeline to enable the training after selection. Furthermore, benefit from the economic supervision, we can focus on a specific grasp, and thus we devise a focal representation module, which comprises an interactive grasp head and a composite score estimation to generate the specific grasp more accurately. Combining all together, the Economic-Grasp framework is proposed. Our extensive experiments show that EconomicGrasp surpasses the SOTA grasp method by about 3AP on average, and with extremely low resource cost, for about 1/4 training time cost, 1/8 memory cost and 1/30 storage cost.