Goto

Collaborating Authors

 Zheng, Thomas Fang


Low-Rank and Sparse Model Merging for Multi-Lingual Speech Recognition and Translation

arXiv.org Artificial Intelligence

Language diversity presents a significant challenge in speech-to-text (S2T) tasks, such as automatic speech recognition and translation. Traditional multi-task training approaches aim to address this by jointly optimizing multiple speech recognition and translation tasks across various languages. While models like Whisper, built on these strategies, demonstrate strong performance, they still face issues of high computational cost, language interference, suboptimal training configurations, and limited extensibility. To overcome these challenges, we introduce LoRS-Merging (low-rank and sparse model merging), a novel technique designed to efficiently integrate models trained on different languages or tasks while preserving performance and reducing computational overhead. LoRS-Merging combines low-rank and sparse pruning to retain essential structures while eliminating redundant parameters, mitigating language and task interference, and enhancing extensibility. Experimental results across a range of languages demonstrate that LoRS-Merging reduces the word error rate by 10% and improves BLEU scores by 4% compared to conventional multi-lingual multi-task training baselines. Our findings suggest that model merging, particularly LoRS-Merging, is a scalable and effective complement to traditional multi-lingual training strategies for S2T applications.


Sagalee: an Open Source Automatic Speech Recognition Dataset for Oromo Language

arXiv.org Artificial Intelligence

We present a novel Automatic Speech Recognition (ASR) dataset for the Oromo language, a widely spoken language in Ethiopia and neighboring regions. The dataset was collected through a crowd-sourcing initiative, encompassing a diverse range of speakers and phonetic variations. It consists of 100 hours of real-world audio recordings paired with transcriptions, covering read speech in both clean and noisy environments. This dataset addresses the critical need for ASR resources for the Oromo language which is underrepresented. To show its applicability for the ASR task, we conducted experiments using the Conformer model, achieving a Word Error Rate (WER) of 15.32% with hybrid CTC and AED loss and WER of 18.74% with pure CTC loss. Additionally, fine-tuning the Whisper model resulted in a significantly improved WER of 10.82%. These results establish baselines for Oromo ASR, highlighting both the challenges and the potential for improving ASR performance in Oromo. The dataset is publicly available at https://github.com/turinaf/sagalee and we encourage its use for further research and development in Oromo speech processing.


Enhancing Quantised End-to-End ASR Models via Personalisation

arXiv.org Artificial Intelligence

Recent end-to-end automatic speech recognition (ASR) models have become increasingly larger, making them particularly challenging to be deployed on resource-constrained devices. Model quantisation is an effective solution that sometimes causes the word error rate (WER) to increase. In this paper, a novel strategy of personalisation for a quantised model (PQM) is proposed, which combines speaker adaptive training (SAT) with model quantisation to improve the performance of heavily compressed models. Specifically, PQM uses a 4-bit NormalFloat Quantisation (NF4) approach for model quantisation and low-rank adaptation (LoRA) for SAT. Experiments have been performed on the LibriSpeech and the TED-LIUM 3 corpora. Remarkably, with a 7x reduction in model size and 1% additional speaker-specific parameters, 15.1% and 23.3% relative WER reductions were achieved on quantised Whisper and Conformer-based attention-based encoder-decoder ASR models respectively, comparing to the original full precision models.


Attack on practical speaker verification system using universal adversarial perturbations

arXiv.org Artificial Intelligence

In authentication scenarios, applications of practical speaker verification systems usually require a person to read a dynamic authentication text. Previous studies played an audio adversarial example as a digital signal to perform physical attacks, which would be easily rejected by audio replay detection modules. This work shows that by playing our crafted adversarial perturbation as a separate source when the adversary is speaking, the practical speaker verification system will misjudge the adversary as a target speaker. A two-step algorithm is proposed to optimize the universal adversarial perturbation to be text-independent and has little effect on the authentication text recognition. We also estimated room impulse response (RIR) in the algorithm which allowed the perturbation to be effective after being played over the air. In the physical experiment, we achieved targeted attacks with success rate of 100%, while the word error rate (WER) on speech recognition was only increased by 3.55%. And recorded audios could pass replay detection for the live person speaking.