Zheng, Songzhu
Reweighting Improves Conditional Risk Bounds
Zhang, Yikai, Lin, Jiahe, Li, Fengpei, Zheng, Songzhu, Raj, Anant, Schneider, Anderson, Nevmyvaka, Yuriy
In this work, we study the weighted empirical risk minimization (weighted ERM) schema, in which an additional data-dependent weight function is incorporated when the empirical risk function is being minimized. We show that under a general ``balanceable" Bernstein condition, one can design a weighted ERM estimator to achieve superior performance in certain sub-regions over the one obtained from standard ERM, and the superiority manifests itself through a data-dependent constant term in the error bound. These sub-regions correspond to large-margin ones in classification settings and low-variance ones in heteroscedastic regression settings, respectively. Our findings are supported by evidence from synthetic data experiments.
Task-Agnostic Detector for Insertion-Based Backdoor Attacks
Lyu, Weimin, Lin, Xiao, Zheng, Songzhu, Pang, Lu, Ling, Haibin, Jha, Susmit, Chen, Chao
Textual backdoor attacks pose significant security threats. Current detection approaches, typically relying on intermediate feature representation or reconstructing potential triggers, are task-specific and less effective beyond sentence classification, struggling with tasks like question answering and named entity recognition. We introduce TABDet (Task-Agnostic Backdoor Detector), a pioneering task-agnostic method for backdoor detection. TABDet leverages final layer logits combined with an efficient pooling technique, enabling unified logit representation across three prominent NLP tasks. TABDet can jointly learn from diverse task-specific models, demonstrating superior detection efficacy over traditional task-specific methods.
Attention-Enhancing Backdoor Attacks Against BERT-based Models
Lyu, Weimin, Zheng, Songzhu, Pang, Lu, Ling, Haibin, Chen, Chao
Recent studies have revealed that \textit{Backdoor Attacks} can threaten the safety of natural language processing (NLP) models. Investigating the strategies of backdoor attacks will help to understand the model's vulnerability. Most existing textual backdoor attacks focus on generating stealthy triggers or modifying model weights. In this paper, we directly target the interior structure of neural networks and the backdoor mechanism. We propose a novel Trojan Attention Loss (TAL), which enhances the Trojan behavior by directly manipulating the attention patterns. Our loss can be applied to different attacking methods to boost their attack efficacy in terms of attack successful rates and poisoning rates. It applies to not only traditional dirty-label attacks, but also the more challenging clean-label attacks. We validate our method on different backbone models (BERT, RoBERTa, and DistilBERT) and various tasks (Sentiment Analysis, Toxic Detection, and Topic Classification).
Learning to Abstain From Uninformative Data
Zhang, Yikai, Zheng, Songzhu, Dalirrooyfard, Mina, Wu, Pengxiang, Schneider, Anderson, Raj, Anant, Nevmyvaka, Yuriy, Chen, Chao
Learning and decision-making in domains with naturally high noise-to-signal ratios - such as Finance or Healthcare - is often challenging, while the stakes are very high. In this paper, we study the problem of learning and acting under a general noisy generative process. In this problem, the data distribution has a significant proportion of uninformative samples with high noise in the label, while part of the data contains useful information represented by low label noise. This dichotomy is present during both training and inference, which requires the proper handling of uninformative data during both training and testing. We propose a novel approach to learning under these conditions via a loss inspired by the selective learning theory. By minimizing this loss, the model is guaranteed to make a near-optimal decision by distinguishing informative data from uninformative data and making predictions. We build upon the strength of our theoretical guarantees by describing an iterative algorithm, which jointly optimizes both a predictor and a selector, and evaluates its empirical performance in a variety of settings.
Learning to Segment from Noisy Annotations: A Spatial Correction Approach
Yao, Jiachen, Zhang, Yikai, Zheng, Songzhu, Goswami, Mayank, Prasanna, Prateek, Chen, Chao
Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly assume noisy labels in different pixels are \textit{i.i.d}. However, segmentation label noise usually has strong spatial correlation and has prominent bias in distribution. In this paper, we propose a novel Markov model for segmentation noisy annotations that encodes both spatial correlation and bias. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations.
A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data for Interpretable In-Hospital Mortality Prediction
Lyu, Weimin, Dong, Xinyu, Wong, Rachel, Zheng, Songzhu, Abell-Hart, Kayley, Wang, Fusheng, Chen, Chao
Deep-learning-based clinical decision support using structured electronic health records (EHR) has been an active research area for predicting risks of mortality and diseases. Meanwhile, large amounts of narrative clinical notes provide complementary information, but are often not integrated into predictive models. In this paper, we provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality. To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes and discover the critical structured EHR features with Shapley values. These important words and clinical features are visualized to assist with interpretation of the prediction outcomes. We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT, which is used to learn the representations of clinical notes. Experiments demonstrated that our model outperforms other methods (AUCPR: 0.538, AUCROC: 0.877, F1:0.490).
Learning with Feature-Dependent Label Noise: A Progressive Approach
Zhang, Yikai, Zheng, Songzhu, Wu, Pengxiang, Goswami, Mayank, Chen, Chao
Label noise is frequently observed in real-world large-scale datasets. The noise is introduced due to a variety of reasons; it is heterogeneous and feature-dependent. Most existing approaches to handling noisy labels fall into two categories: they either assume an ideal feature-independent noise, or remain heuristic without theoretical guarantees. In this paper, we propose to target a new family of featuredependent label noise, which is much more general than commonly used i.i.d. Focusing on this general noise family, we propose a progressive label correction algorithm that iteratively corrects labels and refines the model. We provide theoretical guarantees showing that for a wide variety of (unknown) noise patterns, a classifier trained with this strategy converges to be consistent with the Bayes classifier. In experiments, our method outperforms SOTA baselines and is robust to various noise types and levels. Addressing noise in training set labels is an important problem in supervised learning. Incorrect annotation of data is inevitable in large-scale data collection, due to intrinsic ambiguity of data/class and mistakes of human/automatic annotators (Yan et al., 2014; Andreas et al., 2017). Developing methods that are resilient to label noise is therefore crucial in real-life applications.