Zhen, Liangli
Global Challenge for Safe and Secure LLMs Track 1
Jia, Xiaojun, Huang, Yihao, Liu, Yang, Tan, Peng Yan, Yau, Weng Kuan, Mak, Mun-Thye, Sim, Xin Ming, Ng, Wee Siong, Ng, See Kiong, Liu, Hanqing, Zhou, Lifeng, Yan, Huanqian, Sun, Xiaobing, Liu, Wei, Wang, Long, Qian, Yiming, Liu, Yong, Yang, Junxiao, Zhang, Zhexin, Lei, Leqi, Chen, Renmiao, Lu, Yida, Cui, Shiyao, Wang, Zizhou, Li, Shaohua, Wang, Yan, Goh, Rick Siow Mong, Zhen, Liangli, Zhang, Yingjie, Zhao, Zhe
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks. With the increasing integration of LLMs in critical sectors such as healthcare, finance, and public administration, ensuring these models are resilient to adversarial attacks is vital for preventing misuse and upholding ethical standards. This competition focused on two distinct tracks designed to evaluate and enhance the robustness of LLM security frameworks. Track 1 tasked participants with developing automated methods to probe LLM vulnerabilities by eliciting undesirable responses, effectively testing the limits of existing safety protocols within LLMs. Participants were challenged to devise techniques that could bypass content safeguards across a diverse array of scenarios, from offensive language to misinformation and illegal activities. Through this process, Track 1 aimed to deepen the understanding of LLM vulnerabilities and provide insights for creating more resilient models.
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks
Du, Jiawei, Yan, Hanshu, Feng, Jiashi, Zhou, Joey Tianyi, Zhen, Liangli, Goh, Rick Siow Mong, Tan, Vincent Y. F.
Overparametrized Deep Neural Networks (DNNs) often achieve astounding performances, but may potentially result in severe generalization error. Recently, the relation between the sharpness of the loss landscape and the generalization error has been established by Foret et al. (2020), in which the Sharpness Aware Minimizer (SAM) was proposed to mitigate the degradation of the generalization. Unfortunately, SAM s computational cost is roughly double that of base optimizers, such as Stochastic Gradient Descent (SGD). This paper thus proposes Efficient Sharpness Aware Minimizer (ESAM), which boosts SAM s efficiency at no cost to its generalization performance. ESAM includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection. In the former, the sharpness measure is approximated by perturbing a stochastically chosen set of weights in each iteration; in the latter, the SAM loss is optimized using only a judiciously selected subset of data that is sensitive to the sharpness. We provide theoretical explanations as to why these strategies perform well. We also show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis base optimizers, while test accuracies are preserved or even improved.
Parallel Attention Network with Sequence Matching for Video Grounding
Zhang, Hao, Sun, Aixin, Jing, Wei, Zhen, Liangli, Zhou, Joey Tianyi, Goh, Rick Siow Mong
Given a video, video grounding aims to retrieve a temporal moment that semantically corresponds to a language query. In this work, we propose a Parallel Attention Network with Sequence matching (SeqPAN) to address the challenges in this task: multi-modal representation learning, and target moment boundary prediction. We design a self-guided parallel attention module to effectively capture self-modal contexts and cross-modal attentive information between video and text. Inspired by sequence labeling tasks in natural language processing, we split the ground truth moment into begin, inside, and end regions. We then propose a sequence matching strategy to guide start/end boundary predictions using region labels. Experimental results on three datasets show that SeqPAN is superior to state-of-the-art methods. Furthermore, the effectiveness of the self-guided parallel attention module and the sequence matching module is verified.
Locally linear representation for image clustering
Zhen, Liangli, Yi, Zhang, Peng, Xi, Peng, Dezhong
It is a key to construct a similarity graph in graph-oriented subspace learning and clustering. In a similarity graph, each vertex denotes a data point and the edge weight represents the similarity between two points. There are two popular schemes to construct a similarity graph, i.e., pairwise distance based scheme and linear representation based scheme. Most existing works have only involved one of the above schemes and suffered from some limitations. Specifically, pairwise distance based methods are sensitive to the noises and outliers compared with linear representation based methods. On the other hand, there is the possibility that linear representation based algorithms wrongly select inter-subspaces points to represent a point, which will degrade the performance. In this paper, we propose an algorithm, called Locally Linear Representation (LLR), which integrates pairwise distance with linear representation together to address the problems. The proposed algorithm can automatically encode each data point over a set of points that not only could denote the objective point with less residual error, but also are close to the point in Euclidean space. The experimental results show that our approach is promising in subspace learning and subspace clustering.