Goto

Collaborating Authors

 Zhen, Cheng


Learning Accurate Models on Incomplete Data with Minimal Imputation

arXiv.org Artificial Intelligence

Missing data often exists in real-world datasets, requiring significant time and effort for imputation to learn accurate machine learning (ML) models. In this paper, we demonstrate that imputing all missing values is not always necessary to achieve an accurate ML model. We introduce the concept of minimal data imputation, which ensures accurate ML models trained over the imputed dataset. Implementing minimal imputation guarantees both minimal imputation effort and optimal ML models. We propose algorithms to find exact and approximate minimal imputation for various ML models. Our extensive experiments indicate that our proposed algorithms significantly reduce the time and effort required for data imputation.


Certain and Approximately Certain Models for Statistical Learning

arXiv.org Machine Learning

Real-world data is often incomplete and contains missing values. To train accurate models over real-world datasets, users need to spend a substantial amount of time and resources imputing and finding proper values for missing data items. In this paper, we demonstrate that it is possible to learn accurate models directly from data with missing values for certain training data and target models. We propose a unified approach for checking the necessity of data imputation to learn accurate models across various widely-used machine learning paradigms. We build efficient algorithms with theoretical guarantees to check this necessity and return accurate models in cases where imputation is unnecessary. Our extensive experiments indicate that our proposed algorithms significantly reduce the amount of time and effort needed for data imputation without imposing considerable computational overhead.


Cooperation Does Matter: Exploring Multi-Order Bilateral Relations for Audio-Visual Segmentation

arXiv.org Artificial Intelligence

Recently, an audio-visual segmentation (AVS) task has been introduced, aiming to group pixels with sounding objects within a given video. This task necessitates a first-ever audio-driven pixel-level understanding of the scene, posing significant challenges. In this paper, we propose an innovative audio-visual transformer framework, termed COMBO, an acronym for COoperation of Multi-order Bilateral relatiOns. For the first time, our framework explores three types of bilateral entanglements within AVS: pixel entanglement, modality entanglement, and temporal entanglement. Regarding pixel entanglement, we employ a Siam-Encoder Module (SEM) that leverages prior knowledge to generate more precise visual features from the foundational model. For modality entanglement, we design a Bilateral-Fusion Module (BFM), enabling COMBO to align corresponding visual and auditory signals bi-directionally. As for temporal entanglement, we introduce an innovative adaptive inter-frame consistency loss according to the inherent rules of temporal. Comprehensive experiments and ablation studies on AVSBench-object (84.7 mIoU on S4, 59.2 mIou on MS3) and AVSBench-semantic (42.1 mIoU on AVSS) datasets demonstrate that COMBO surpasses previous state-of-the-art methods. Code and more results will be publicly available at https://combo-avs.github.io/.


Designing Novel Cognitive Diagnosis Models via Evolutionary Multi-Objective Neural Architecture Search

arXiv.org Artificial Intelligence

Cognitive diagnosis plays a vital role in modern intelligent education platforms to reveal students' proficiency in knowledge concepts for subsequent adaptive tasks. However, due to the requirement of high model interpretability, existing manually designed cognitive diagnosis models hold too simple architectures to meet the demand of current intelligent education systems, where the bias of human design also limits the emergence of effective cognitive diagnosis models. In this paper, we propose to automatically design novel cognitive diagnosis models by evolutionary multi-objective neural architecture search (NAS). Specifically, we observe existing models can be represented by a general model handling three given types of inputs and thus first design an expressive search space for the NAS task in cognitive diagnosis. Then, we propose multi-objective genetic programming (MOGP) to explore the NAS task's search space by maximizing model performance and interpretability. In the MOGP design, each architecture is transformed into a tree architecture and encoded by a tree for easy optimization, and a tailored genetic operation based on four sub-genetic operations is devised to generate offspring effectively. Besides, an initialization strategy is also suggested to accelerate the convergence by evolving half of the population from existing models' variants. Experiments on two real-world datasets demonstrate that the cognitive diagnosis models searched by the proposed approach exhibit significantly better performance than existing models and also hold as good interpretability as human-designed models.