Zhao, Ziyue
SeizureTransformer: Scaling U-Net with Transformer for Simultaneous Time-Step Level Seizure Detection from Long EEG Recordings
Wu, Kerui, Zhao, Ziyue, Yener, Bülent
--Epilepsy is a common neurological disorder that affects around 65 million people worldwide. Detecting seizures quickly and accurately is vital, given the prevalence and severity of the associated complications. Recently, deep learning-based automated seizure detection methods have emerged as solutions; however, most existing methods require extensive post-processing and do not effectively handle the crucial long-range patterns in EEG data. In this work, we propose SeizureTransformer, a simple model comprised of (i) a deep encoder comprising 1D convolutions (ii) a residual CNN stack and a transformer encoder to embed previous output into high-level representation with contextual information, and (iii) streamlined decoder which converts these features into a sequence of probabilities, directly indicating the presence or absence of seizures at every time step. Extensive experiments on public and private EEG seizure detection datasets demonstrate that our model significantly outperforms existing approaches (ranked in the first place in the 2025 "seizure detection challenge" organized in the International Conference on Artificial Intelligence in Epilepsy and Other Neurological Disorders), underscoring its potential for real-time, precise seizure detection. Epilepsy is a prevalent neurological disorder distinguished by recurring seizures. Worldwide, there are approximately 65 million people with epilepsy, more than Parkinson's disease, Alzheimer's disease, and Multiple Sclerosis combined.
Manboformer: Learning Gaussian Representations via Spatial-temporal Attention Mechanism
Zhao, Ziyue, Qi, Qining, Ma, Jianfa
Compared with voxel-based grid prediction, in the field of 3D semantic occupation prediction for autonomous driving, GaussianFormer proposed using 3D Gaussian to describe scenes with sparse 3D semantic Gaussian based on objects is another scheme with lower memory requirements. Each 3D Gaussian function represents a flexible region of interest and its semantic features, which are iteratively refined by the attention mechanism. In the experiment, it is found that the Gaussian function required by this method is larger than the query resolution of the original dense grid network, resulting in impaired performance. Therefore, we consider optimizing GaussianFormer by using unused temporal information. We learn the Spatial-Temporal Self-attention Mechanism from the previous grid-given occupation network and improve it to GaussianFormer. The experiment was conducted with the NuScenes dataset, and the experiment is currently underway.
Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization
Beckers, Jim, van Erp, Bart, Zhao, Ziyue, Kondrashov, Kirill, de Vries, Bert
Bayesian model reduction provides an efficient approach for comparing the performance of all nested sub-models of a model, without re-evaluating any of these sub-models. Until now, Bayesian model reduction has been applied mainly in the computational neuroscience community on simple models. In this paper, we formulate and apply Bayesian model reduction to perform principled pruning of Bayesian neural networks, based on variational free energy minimization. Direct application of Bayesian model reduction, however, gives rise to approximation errors. Therefore, a novel iterative pruning algorithm is presented to alleviate the problems arising with naive Bayesian model reduction, as supported experimentally on the publicly available UCI datasets for different inference algorithms. This novel parameter pruning scheme solves the shortcomings of current state-of-the-art pruning methods that are used by the signal processing community. The proposed approach has a clear stopping criterion and minimizes the same objective that is used during training. Next to these benefits, our experiments indicate better model performance in comparison to state-of-the-art pruning schemes.