Goto

Collaborating Authors

 Zhao, Zhuoya


Brain-inspired and Self-based Artificial Intelligence

arXiv.org Artificial Intelligence

The question "Can machines think?" and the Turing Test to assess whether machines could achieve human-level intelligence is one of the roots of AI. With the philosophical argument "I think, therefore I am", this paper challenge the idea of a "thinking machine" supported by current AIs since there is no sense of self in them. Current artificial intelligence is only seemingly intelligent information processing and does not truly understand or be subjectively aware of oneself and perceive the world with the self as human intelligence does. In this paper, we introduce a Brain-inspired and Self-based Artificial Intelligence (BriSe AI) paradigm. This BriSe AI paradigm is dedicated to coordinating various cognitive functions and learning strategies in a self-organized manner to build human-level AI models and robotic applications. Specifically, BriSe AI emphasizes the crucial role of the Self in shaping the future AI, rooted with a practical hierarchical Self framework, including Perception and Learning, Bodily Self, Autonomous Self, Social Self, and Conceptual Self. The hierarchical framework of the Self highlights self-based environment perception, self-bodily modeling, autonomous interaction with the environment, social interaction and collaboration with others, and even more abstract understanding of the Self. Furthermore, the positive mutual promotion and support among multiple levels of Self, as well as between Self and learning, enhance the BriSe AI's conscious understanding of information and flexible adaptation to complex environments, serving as a driving force propelling BriSe AI towards real Artificial General Intelligence.


A Brain-inspired Theory of Collective Mind Model for Efficient Social Cooperation

arXiv.org Artificial Intelligence

Social intelligence manifests the capability, often referred to as the Theory of Mind (ToM), to discern others' behavioral intentions, beliefs, and other mental states. ToM is especially important in multi-agent and human-machine interaction environments because each agent needs to understand the mental states of other agents in order to better respond, interact, and collaborate. Recent research indicates that the ToM model possesses the capability to infer beliefs, intentions, and anticipate future observations and actions; nonetheless, its deployment in tackling intricate tasks remains notably limited. The challenges arise when the number of agents increases, the environment becomes more complex, and interacting with the environment and predicting the mental state of each other becomes difficult and time consuming. To overcome such limits, we take inspiration from the Theory of Collective Mind (ToCM) mechanism, predicting observations of all other agents into a unified but plural representation and discerning how our own actions affect this mental state representation. Based on this foundation, we construct an imaginative space to simulate the multi-agent interaction process, thus improving the efficiency of cooperation among multiple agents in complex decision-making environments. In various cooperative tasks with different numbers of agents, the experimental results highlight the superior cooperative efficiency and performance of our approach compared to the Multi-Agent Reinforcement Learning (MARL) baselines. We achieve consistent boost on SNN- and DNN-based decision networks, and demonstrate that ToCM's inferences about others' mental states can be transferred to new tasks for quickly and flexible adaptation.


Brain-inspired Evolutionary Architectures for Spiking Neural Networks

arXiv.org Artificial Intelligence

The complex and unique neural network topology of the human brain formed through natural evolution enables it to perform multiple cognitive functions simultaneously. Automated evolutionary mechanisms of biological network structure inspire us to explore efficient architectural optimization for Spiking Neural Networks (SNNs). Instead of manually designed fixed architectures or hierarchical Network Architecture Search (NAS), this paper evolves SNNs architecture by incorporating brain-inspired local modular structure and global cross-module connectivity. Locally, the brain region-inspired module consists of multiple neural motifs with excitatory and inhibitory connections; Globally, we evolve free connections among modules, including long-term cross-module feedforward and feedback connections. We further introduce an efficient multi-objective evolutionary algorithm based on a few-shot performance predictor, endowing SNNs with high performance, efficiency and low energy consumption. Extensive experiments on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS, DVS128-Gesture) demonstrate that our proposed model boosts energy efficiency, archiving consistent and remarkable performance. This work explores brain-inspired neural architectures suitable for SNNs and also provides preliminary insights into the evolutionary mechanisms of biological neural networks in the human brain.


Multi-compartment Neuron and Population Encoding improved Spiking Neural Network for Deep Distributional Reinforcement Learning

arXiv.org Artificial Intelligence

Inspired by the information processing with binary spikes in the brain, the spiking neural networks (SNNs) exhibit significant low energy consumption and are more suitable for incorporating multi-scale biological characteristics. Spiking Neurons, as the basic information processing unit of SNNs, are often simplified in most SNNs which only consider LIF point neuron and do not take into account the multi-compartmental structural properties of biological neurons. This limits the computational and learning capabilities of SNNs. In this paper, we proposed a brain-inspired SNN-based deep distributional reinforcement learning algorithm with combination of bio-inspired multi-compartment neuron (MCN) model and population coding method. The proposed multi-compartment neuron built the structure and function of apical dendritic, basal dendritic, and somatic computing compartments to achieve the computational power close to that of biological neurons. Besides, we present an implicit fractional embedding method based on spiking neuron population encoding. We tested our model on Atari games, and the experiment results show that the performance of our model surpasses the vanilla ANN-based FQF model and ANN-SNN conversion method based Spiking-FQF models. The ablation experiments show that the proposed multi-compartment neural model and quantile fraction implicit population spike representation play an important role in realizing SNN-based deep distributional reinforcement learning.