Plotting

 Zhao, Zhuokai


RELAX: Reinforcement Learning Enabled 2D-LiDAR Autonomous System for Parsimonious UAVs

arXiv.org Artificial Intelligence

Unmanned Aerial Vehicles (UAVs) have gained significant prominence in recent years for areas including surveillance, search, rescue, and package delivery. One key aspect in UAV operations shared across all these tasks is the autonomous path planning, which enables UAV to navigate through complex, unknown, and dynamic environments while avoiding obstacles without human control. Despite countless efforts having been devoted to this subject, new challenges are constantly arisen due to the persistent trade-off between performance and cost. And new studies are more urgently needed to develop autonomous system for UAVs with parsimonious sensor setup, which is a major need for wider adoptions. To this end, we propose an end-to-end autonomous framework to enable UAVs with only one single 2D-LiDAR sensor to operate in unknown dynamic environments. More specifically, we break our approach into three stages: a pre-processing Map Constructor; an offline Mission Planner; and an online reinforcement learning (RL)-based Dynamic Obstacle Handler. Experiments show that our approach provides robust and reliable dynamic path planning and obstacle avoidance with only 1/10 of the cost in sensor configuration. The code will be made public upon acceptance.


Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits

arXiv.org Artificial Intelligence

Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.


Breaking the Curse of Quality Saturation with User-Centric Ranking

arXiv.org Artificial Intelligence

A key puzzle in search, ads, and recommendation is that the ranking model can only utilize a small portion of the vastly available user interaction data. As a result, increasing data volume, model size, or computation FLOPs will quickly suffer from diminishing returns. We examined this problem and found that one of the root causes may lie in the so-called ``item-centric'' formulation, which has an unbounded vocabulary and thus uncontrolled model complexity. To mitigate quality saturation, we introduce an alternative formulation named ``user-centric ranking'', which is based on a transposed view of the dyadic user-item interaction data. We show that this formulation has a promising scaling property, enabling us to train better-converged models on substantially larger data sets.