Zhao, Yuzhi
ICM-Assistant: Instruction-tuning Multimodal Large Language Models for Rule-based Explainable Image Content Moderation
Wu, Mengyang, Zhao, Yuzhi, Cao, Jialun, Xu, Mingjie, Jiang, Zhongming, Wang, Xuehui, Li, Qinbin, Hu, Guangneng, Qin, Shengchao, Fu, Chi-Wing
Controversial contents largely inundate the Internet, infringing various cultural norms and child protection standards. Traditional Image Content Moderation (ICM) models fall short in producing precise moderation decisions for diverse standards, while recent multimodal large language models (MLLMs), when adopted to general rule-based ICM, often produce classification and explanation results that are inconsistent with human moderators. Aiming at flexible, explainable, and accurate ICM, we design a novel rule-based dataset generation pipeline, decomposing concise human-defined rules and leveraging well-designed multi-stage prompts to enrich short explicit image annotations. Our ICM-Instruct dataset includes detailed moderation explanation and moderation Q-A pairs. Built upon it, we create our ICM-Assistant model in the framework of rule-based ICM, making it readily applicable in real practice. Our ICM-Assistant model demonstrates exceptional performance and flexibility. Specifically, it significantly outperforms existing approaches on various sources, improving both the moderation classification (36.8\% on average) and moderation explanation quality (26.6\% on average) consistently over existing MLLMs. Code/Data is available at https://github.com/zhaoyuzhi/ICM-Assistant.
Bidirectionally Deformable Motion Modulation For Video-based Human Pose Transfer
Yu, Wing-Yin, Po, Lai-Man, Cheung, Ray C. C., Zhao, Yuzhi, Xue, Yu, Li, Kun
Video-based human pose transfer is a video-to-video generation task that animates a plain source human image based on a series of target human poses. Considering the difficulties in transferring highly structural patterns on the garments and discontinuous poses, existing methods often generate unsatisfactory results such as distorted textures and flickering artifacts. To address these issues, we propose a novel Deformable Motion Modulation (DMM) that utilizes geometric kernel offset with adaptive weight modulation to simultaneously perform feature alignment and style transfer. Different from normal style modulation used in style transfer, the proposed modulation mechanism adaptively reconstructs smoothed frames from style codes according to the object shape through an irregular receptive field of view. To enhance the spatio-temporal consistency, we leverage bidirectional propagation to extract the hidden motion information from a warped image sequence generated by noisy poses. The proposed feature propagation significantly enhances the motion prediction ability by forward and backward propagation. Both quantitative and qualitative experimental results demonstrate superiority over the state-of-the-arts in terms of image fidelity and visual continuity. The source code is publicly available at github.com/rocketappslab/bdmm.
Spatial Content Alignment For Pose Transfer
Yu, Wing-Yin, Po, Lai-Man, Zhao, Yuzhi, Xiong, Jingjing, Lau, Kin-Wai
Due to unreliable geometric matching and content misalignment, most conventional pose transfer algorithms fail to generate fine-trained person images. In this paper, we propose a novel framework Spatial Content Alignment GAN (SCAGAN) which aims to enhance the content consistency of garment textures and the details of human characteristics. We first alleviate the spatial misalignment by transferring the edge content to the target pose in advance. Secondly, we introduce a new Content-Style DeBlk which can progressively synthesize photo-realistic person images based on the appearance features of the source image, the target pose heatmap and the prior transferred content in edge domain. We compare the proposed framework with several state-of-the-art methods to show its superiority in quantitative and qualitative analysis. Moreover, detailed ablation study results demonstrate the efficacy of our contributions. Codes are publicly available at github.com/rocketappslab/SCA-GAN.