Zhao, Yaping
Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge
Yenamandra, Sriram, Ramachandran, Arun, Khanna, Mukul, Yadav, Karmesh, Vakil, Jay, Melnik, Andrew, Büttner, Michael, Harz, Leon, Brown, Lyon, Nandi, Gora Chand, PS, Arjun, Yadav, Gaurav Kumar, Kala, Rahul, Haschke, Robert, Luo, Yang, Zhu, Jinxin, Han, Yansen, Lu, Bingyi, Gu, Xuan, Liu, Qinyuan, Zhao, Yaping, Ye, Qiting, Dou, Chenxiao, Chua, Yansong, Kuzma, Volodymyr, Humennyy, Vladyslav, Partsey, Ruslan, Francis, Jonathan, Chaplot, Devendra Singh, Chhablani, Gunjan, Clegg, Alexander, Gervet, Theophile, Jain, Vidhi, Ramrakhya, Ram, Szot, Andrew, Wang, Austin, Yang, Tsung-Yen, Edsinger, Aaron, Kemp, Charlie, Shah, Binit, Kira, Zsolt, Batra, Dhruv, Mottaghi, Roozbeh, Bisk, Yonatan, Paxton, Chris
In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.
Pruning random resistive memory for optimizing analogue AI
Li, Yi, Wang, Songqi, Zhao, Yaping, Wang, Shaocong, Zhang, Woyu, He, Yangu, Lin, Ning, Cui, Binbin, Chen, Xi, Zhang, Shiming, Jiang, Hao, Lin, Peng, Zhang, Xumeng, Qi, Xiaojuan, Wang, Zhongrui, Xu, Xiaoxin, Shang, Dashan, Liu, Qi, Cheng, Kwang-Ting, Liu, Ming
The rapid advancement of artificial intelligence (AI) has been marked by the large language models exhibiting human-like intelligence. However, these models also present unprecedented challenges to energy consumption and environmental sustainability. One promising solution is to revisit analogue computing, a technique that predates digital computing and exploits emerging analogue electronic devices, such as resistive memory, which features in-memory computing, high scalability, and nonvolatility. However, analogue computing still faces the same challenges as before: programming nonidealities and expensive programming due to the underlying devices physics. Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning to optimize the topology of a randomly weighted analogue resistive memory neural network. Software-wise, the topology of a randomly weighted neural network is optimized by pruning connections rather than precisely tuning resistive memory weights. Hardware-wise, we reveal the physical origin of the programming stochasticity using transmission electron microscopy, which is leveraged for large-scale and low-cost implementation of an overparameterized random neural network containing high-performance sub-networks. We implemented the co-design on a 40nm 256K resistive memory macro, observing 17.3% and 19.9% accuracy improvements in image and audio classification on FashionMNIST and Spoken digits datasets, as well as 9.8% (2%) improvement in PR (ROC) in image segmentation on DRIVE datasets, respectively. This is accompanied by 82.1%, 51.2%, and 99.8% improvement in energy efficiency thanks to analogue in-memory computing. By embracing the intrinsic stochasticity and in-memory computing, this work may solve the biggest obstacle of analogue computing systems and thus unleash their immense potential for next-generation AI hardware.
Large-Scale Traffic Congestion Prediction based on Multimodal Fusion and Representation Mapping
Zhou, Bodong, Liu, Jiahui, Cui, Songyi, Zhao, Yaping
With the progress of the urbanisation process, the urban transportation system is extremely critical to the development of cities and the quality of life of the citizens. Among them, it is one of the most important tasks to judge traffic congestion by analysing the congestion factors. Recently, various traditional and machine-learning-based models have been introduced for predicting traffic congestion. However, these models are either poorly aggregated for massive congestion factors or fail to make accurate predictions for every precise location in large-scale space. To alleviate these problems, a novel end-to-end framework based on convolutional neural networks is proposed in this paper. With learning representations, the framework proposes a novel multimodal fusion module and a novel representation mapping module to achieve traffic congestion predictions on arbitrary query locations on a large-scale map, combined with various global reference information. The proposed framework achieves significant results and efficient inference on real-world large-scale datasets.