Goto

Collaborating Authors

 Zhao, Xiaoting


Fairness-aware Differentially Private Collaborative Filtering

arXiv.org Artificial Intelligence

Recently, there has been an increasing adoption of differential privacy guided algorithms for privacy-preserving machine learning tasks. However, the use of such algorithms comes with trade-offs in terms of algorithmic fairness, which has been widely acknowledged. Specifically, we have empirically observed that the classical collaborative filtering method, trained by differentially private stochastic gradient descent (DP-SGD), results in a disparate impact on user groups with respect to different user engagement levels. This, in turn, causes the original unfair model to become even more biased against inactive users. To address the above issues, we propose \textbf{DP-Fair}, a two-stage framework for collaborative filtering based algorithms. Specifically, it combines differential privacy mechanisms with fairness constraints to protect user privacy while ensuring fair recommendations. The experimental results, based on Amazon datasets, and user history logs collected from Etsy, one of the largest e-commerce platforms, demonstrate that our proposed method exhibits superior performance in terms of both overall accuracy and user group fairness on both shallow and deep recommendation models compared to vanilla DP-SGD.


Learning Item-Interaction Embeddings for User Recommendations

arXiv.org Machine Learning

Industry-scale recommendation systems have become a cornerstone of the e-commerce shopping experience. For Etsy, an online marketplace with over 50 million handmade and vintage items, users come to rely on personalized recommendations to surface relevant items from its massive inventory. One hallmark of Etsy's shopping experience is the multitude of ways in which a user can interact with an item they are interested in: they can view it, favorite it, add it to a collection, add it to cart, purchase it, etc. We hypothesize that the different ways in which a user interacts with an item indicates different kinds of intent. Consequently, a user's recommendations should be based not only on the item from their past activity, but also the way in which they interacted with that item. In this paper, we propose a novel method for learning interaction-based item embeddings that encode the co-occurrence patterns of not only the item itself, but also the interaction type. The learned embeddings give us a convenient way of approximating the likelihood that one item-interaction pair would co-occur with another by way of a simple inner product. Because of its computational efficiency, our model lends itself naturally as a candidate set selection method, and we evaluate it as such in an industry-scale recommendation system that serves live traffic on Etsy.com. Our experiments reveal that taking interaction type into account shows promising results in improving the accuracy of modeling user shopping behavior.


Clustering via Content-Augmented Stochastic Blockmodels

arXiv.org Machine Learning

Much of the data being created on the web contains interactions between users and items. Stochastic blockmodels, and other methods for community detection and clustering of bipartite graphs, can infer latent user communities and latent item clusters from this interaction data. These methods, however, typically ignore the items' contents and the information they provide about item clusters, despite the tendency of items in the same latent cluster to share commonalities in content. We introduce content-augmented stochastic blockmodels (CASB), which use item content together with user-item interaction data to enhance the user communities and item clusters learned. Comparisons to several state-of-the-art benchmark methods, on datasets arising from scientists interacting with scientific articles, show that content-augmented stochastic blockmodels provide highly accurate clusters with respect to metrics representative of the underlying community structure.