Goto

Collaborating Authors

 Zhao, Xianbing


Predicting Depression in Screening Interviews from Interactive Multi-Theme Collaboration

arXiv.org Artificial Intelligence

Automatic depression detection provides cues for early clinical intervention by clinicians. Clinical interviews for depression detection involve dialogues centered around multiple themes. Existing studies primarily design end-to-end neural network models to capture the hierarchical structure of clinical interview dialogues. However, these methods exhibit defects in modeling the thematic content of clinical interviews: 1) they fail to capture intra-theme and inter-theme correlation explicitly, and 2) they do not allow clinicians to intervene and focus on themes of interest. To address these issues, this paper introduces an interactive depression detection framework. This framework leverages in-context learning techniques to identify themes in clinical interviews and then models both intra-theme and inter-theme correlation. Additionally, it employs AI-driven feedback to simulate the interests of clinicians, enabling interactive adjustment of theme importance. PDIMC achieves absolute improvements of 35\% and 12\% compared to the state-of-the-art on the depression detection dataset DAIC-WOZ, which demonstrates the effectiveness of modeling theme correlation and incorporating interactive external feedback.


Toward Robust Multimodal Learning using Multimodal Foundational Models

arXiv.org Artificial Intelligence

Existing multimodal sentiment analysis tasks are highly rely on the assumption that the training and test sets are complete multimodal data, while this assumption can be difficult to hold: the multimodal data are often incomplete in real-world scenarios. Therefore, a robust multimodal model in scenarios with randomly missing modalities is highly preferred. Recently, CLIP-based multimodal foundational models have demonstrated impressive performance on numerous multimodal tasks by learning the aligned cross-modal semantics of image and text pairs, but the multimodal foundational models are also unable to directly address scenarios involving modality absence. To alleviate this issue, we propose a simple and effective framework, namely TRML, Toward Robust Multimodal Learning using Multimodal Foundational Models. TRML employs generated virtual modalities to replace missing modalities, and aligns the semantic spaces between the generated and missing modalities. Concretely, we design a missing modality inference module to generate virtual modaliites and replace missing modalities. We also design a semantic matching learning module to align semantic spaces generated and missing modalities. Under the prompt of complete modality, our model captures the semantics of missing modalities by leveraging the aligned cross-modal semantic space. Experiments demonstrate the superiority of our approach on three multimodal sentiment analysis benchmark datasets, CMU-MOSI, CMU-MOSEI, and MELD.


SHAPE: A Sample-adaptive Hierarchical Prediction Network for Medication Recommendation

arXiv.org Artificial Intelligence

Effectively medication recommendation with complex multimorbidity conditions is a critical task in healthcare. Most existing works predicted medications based on longitudinal records, which assumed the information transmitted patterns of learning longitudinal sequence data are stable and intra-visit medical events are serialized. However, the following conditions may have been ignored: 1) A more compact encoder for intra-relationship in the intra-visit medical event is urgent; 2) Strategies for learning accurate representations of the variable longitudinal sequences of patients are different. In this paper, we proposed a novel Sample-adaptive Hierarchical medicAtion Prediction nEtwork, termed SHAPE, to tackle the above challenges in the medication recommendation task. Specifically, we design a compact intra-visit set encoder to encode the relationship in the medical event for obtaining visit-level representation and then develop an inter-visit longitudinal encoder to learn the patient-level longitudinal representation efficiently. To endow the model with the capability of modeling the variable visit length, we introduce a soft curriculum learning method to assign the difficulty of each sample automatically by the visit length. Extensive experiments on a benchmark dataset verify the superiority of our model compared with several state-of-the-art baselines.


Medication Recommendation via Domain Knowledge Informed Deep Learning

arXiv.org Artificial Intelligence

Medication recommendation is a fundamental yet crucial branch of healthcare, which provides opportunities to support clinical physicians with more accurate medication prescriptions for patients with complex health conditions. Learning from electronic health records (EHR) to recommend medications is the most common way in previous studies. However, most of them neglect incorporating domain knowledge according to the clinical manifestations in the EHR of the patient. To address these issues, we propose a novel \textbf{D}omain \textbf{K}nowledge \textbf{I}nformed \textbf{Net}work (DKINet) to integrate domain knowledge with observable clinical manifestations of the patient, which is the first dynamic domain knowledge informed framework toward medication recommendation. In particular, we first design a knowledge-driven encoder to capture the domain information and then develop a data-driven encoder to integrate domain knowledge into the observable EHR. To endow the model with the capability of temporal decision, we design an explicit medication encoder for learning the longitudinal dependence of the patient. Extensive experiments on three publicly available datasets verify the superiority of our method. The code will be public upon acceptance.