Goto

Collaborating Authors

 Zhao, Wenshuai


Cooperative Multi-Agent Planning with Adaptive Skill Synthesis

arXiv.org Artificial Intelligence

Despite much progress in training distributed artificial intelligence (AI), building cooperative multi-agent systems with multi-agent reinforcement learning (MARL) faces challenges in sample efficiency, interpretability, and transferability. Unlike traditional learning-based methods that require extensive interaction with the environment, large language models (LLMs) demonstrate remarkable capabilities in zero-shot planning and complex reasoning. However, existing LLM-based approaches heavily rely on text-based observations and struggle with the non-Markovian nature of multi-agent interactions under partial observability. We present COMPASS, a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making. The skill library, bootstrapped from demonstrations, evolves via planner-guided tasks to enable adaptive strategies. COMPASS propagates entity information through multi-hop communication under partial observability. Evaluations on the improved StarCraft Multi-Agent Challenge (SMACv2) demonstrate COMPASS achieves up to 30\% higher win rates than state-of-the-art MARL algorithms in symmetric scenarios.


Bi-Level Motion Imitation for Humanoid Robots

arXiv.org Artificial Intelligence

Imitation learning from human motion capture (MoCap) data provides a promising way to train humanoid robots. However, due to differences in morphology, such as varying degrees of joint freedom and force limits, exact replication of human behaviors may not be feasible for humanoid robots. Consequently, incorporating physically infeasible MoCap data in training datasets can adversely affect the performance of the robot policy. To address this issue, we propose a bi-level optimization-based imitation learning framework that alternates between optimizing both the robot policy and the target MoCap data. Specifically, we first develop a generative latent dynamics model using a novel self-consistent auto-encoder, which learns sparse and structured motion representations while capturing desired motion patterns in the dataset. The dynamics model is then utilized to generate reference motions while the latent representation regularizes the bi-level motion imitation process. Simulations conducted with a realistic model of a humanoid robot demonstrate that our method enhances the robot policy by modifying reference motions to be physically consistent.


Learning Progress Driven Multi-Agent Curriculum

arXiv.org Artificial Intelligence

Curriculum reinforcement learning (CRL) aims to speed up learning by gradually increasing the difficulty of a task, usually quantified by the achievable expected return. Inspired by the success of CRL in single-agent settings, a few works have attempted to apply CRL to multi-agent reinforcement learning (MARL) using the number of agents to control task difficulty. However, existing works typically use manually defined curricula such as a linear scheme. In this paper, we first apply state-of-the-art single-agent self-paced CRL to sparse reward MARL. Although with satisfying performance, we identify two potential flaws of the curriculum generated by existing reward-based CRL methods: (1) tasks with high returns may not provide informative learning signals and (2) the exacerbated credit assignment difficulty in tasks where more agents yield higher returns. Thereby, we further propose self-paced MARL (SPMARL) to prioritize tasks based on \textit{learning progress} instead of the episode return. Our method not only outperforms baselines in three challenging sparse-reward benchmarks but also converges faster than self-paced CRL.


Backpropagation Through Agents

arXiv.org Artificial Intelligence

A fundamental challenge in multi-agent reinforcement learning (MARL) is to learn the joint policy in an extremely large search space, which grows exponentially with the number of agents. Moreover, fully decentralized policy factorization significantly restricts the search space, which may lead to sub-optimal policies. In contrast, the auto-regressive joint policy can represent a much richer class of joint policies by factorizing the joint policy into the product of a series of conditional individual policies. While such factorization introduces the action dependency among agents explicitly in sequential execution, it does not take full advantage of the dependency during learning. In particular, the subsequent agents do not give the preceding agents feedback about their decisions. In this paper, we propose a new framework Back-Propagation Through Agents (BPTA) that directly accounts for both agents' own policy updates and the learning of their dependent counterparts. This is achieved by propagating the feedback through action chains. With the proposed framework, our Bidirectional Proximal Policy Optimisation (BPPO) outperforms the state-of-the-art methods. Extensive experiments on matrix games, StarCraftII v2, Multi-agent MuJoCo, and Google Research Football demonstrate the effectiveness of the proposed method.


AgentMixer: Multi-Agent Correlated Policy Factorization

arXiv.org Artificial Intelligence

Centralized training with decentralized execution (CTDE) is widely employed to stabilize partially observable multi-agent reinforcement learning (MARL) by utilizing a centralized value function during training. However, existing methods typically assume that agents make decisions based on their local observations independently, which may not lead to a correlated joint policy with sufficient coordination. Inspired by the concept of correlated equilibrium, we propose to introduce a \textit{strategy modification} to provide a mechanism for agents to correlate their policies. Specifically, we present a novel framework, AgentMixer, which constructs the joint fully observable policy as a non-linear combination of individual partially observable policies. To enable decentralized execution, one can derive individual policies by imitating the joint policy. Unfortunately, such imitation learning can lead to \textit{asymmetric learning failure} caused by the mismatch between joint policy and individual policy information. To mitigate this issue, we jointly train the joint policy and individual policies and introduce \textit{Individual-Global-Consistency} to guarantee mode consistency between the centralized and decentralized policies. We then theoretically prove that AgentMixer converges to an $\epsilon$-approximate Correlated Equilibrium. The strong experimental performance on three MARL benchmarks demonstrates the effectiveness of our method.


Optimistic Multi-Agent Policy Gradient for Cooperative Tasks

arXiv.org Artificial Intelligence

\textit{Relative overgeneralization} (RO) occurs in cooperative multi-agent learning tasks when agents converge towards a suboptimal joint policy due to overfitting to suboptimal behavior of other agents. In early work, optimism has been shown to mitigate the \textit{RO} problem when using tabular Q-learning. However, with function approximation optimism can amplify overestimation and thus fail on complex tasks. On the other hand, recent deep multi-agent policy gradient (MAPG) methods have succeeded in many complex tasks but may fail with severe \textit{RO}. We propose a general, yet simple, framework to enable optimistic updates in MAPG methods and alleviate the RO problem. Specifically, we employ a \textit{Leaky ReLU} function where a single hyperparameter selects the degree of optimism to reshape the advantages when updating the policy. Intuitively, our method remains optimistic toward individual actions with lower returns which are potentially caused by other agents' sub-optimal behavior during learning. The optimism prevents the individual agents from quickly converging to a local optimum. We also provide a formal analysis from an operator view to understand the proposed advantage transformation. In extensive evaluations on diverse sets of tasks, including illustrative matrix games, complex \textit{Multi-agent MuJoCo} and \textit{Overcooked} benchmarks, the proposed method\footnote{Code can be found at \url{https://github.com/wenshuaizhao/optimappo}.} outperforms strong baselines on 13 out of 19 tested tasks and matches the performance on the rest.


Less Is More: Robust Robot Learning via Partially Observable Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

In many multi-agent and high-dimensional robotic tasks, the controller can be designed in either a centralized or decentralized way. Correspondingly, it is possible to use either single-agent reinforcement learning (SARL) or multi-agent reinforcement learning (MARL) methods to learn such controllers. However, the relationship between these two paradigms remains under-studied in the literature. This work explores research questions in terms of robustness and performance of SARL and MARL approaches to the same task, in order to gain insight into the most suitable methods. We start by analytically showing the equivalence between these two paradigms under the full-state observation assumption. Then, we identify a broad subclass of \textit{Dec-POMDP} tasks where the agents are weakly or partially interacting. In these tasks, we show that partial observations of each agent are sufficient for near-optimal decision-making. Furthermore, we propose to exploit such partially observable MARL to improve the robustness of robots when joint or agent failures occur. Our experiments on both simulated multi-agent tasks and a real robot task with a mobile manipulator validate the presented insights and the effectiveness of the proposed robust robot learning method via partially observable MARL.


Simplified Temporal Consistency Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning is able to solve complex sequential decision-making tasks but is currently limited by sample efficiency and required computation. To improve sample efficiency, recent work focuses on model-based RL which interleaves model learning with planning. Recent methods further utilize policy learning, value estimation, and, self-supervised learning as auxiliary objectives. In this paper we show that, surprisingly, a simple representation learning approach relying only on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL. This applies when using pure planning with a dynamics model conditioned on the representation, but, also when utilizing the representation as policy and value function features in model-free RL. In experiments, our approach learns an accurate dynamics model to solve challenging high-dimensional locomotion tasks with online planners while being 4.1 times faster to train compared to ensemble-based methods. With model-free RL without planning, especially on high-dimensional tasks, such as the DeepMind Control Suite Humanoid and Dog tasks, our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.


Towards Closing the Sim-to-Real Gap in Collaborative Multi-Robot Deep Reinforcement Learning

arXiv.org Machine Learning

Current research directions in deep reinforcement learning include bridging the simulation-reality gap, improving sample efficiency of experiences in distributed multi-agent reinforcement learning, together with the development of robust methods against adversarial agents in distributed learning, among many others. In this work, we are particularly interested in analyzing how multi-agent reinforcement learning can bridge the gap to reality in distributed multi-robot systems where the operation of the different robots is not necessarily homogeneous. These variations can happen due to sensing mismatches, inherent errors in terms of calibration of the mechanical joints, or simple differences in accuracy. While our results are simulation-based, we introduce the effect of sensing, calibration, and accuracy mismatches in distributed reinforcement learning with proximal policy optimization (PPO). We discuss on how both the different types of perturbances and how the number of agents experiencing those perturbances affect the collaborative learning effort. The simulations are carried out using a Kuka arm model in the Bullet physics engine. This is, to the best of our knowledge, the first work exploring the limitations of PPO in multi-robot systems when considering that different robots might be exposed to different environments where their sensors or actuators have induced errors. With the conclusions of this work, we set the initial point for future work on designing and developing methods to achieve robust reinforcement learning on the presence of real-world perturbances that might differ within a multi-robot system.