Goto

Collaborating Authors

 Zhao, Wangbo


MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification

arXiv.org Artificial Intelligence

Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, where the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answer Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.


Recurrent Diffusion for Large-Scale Parameter Generation

arXiv.org Artificial Intelligence

Parameter generation has long struggled to match the scale of today large vision and language models, curbing its broader utility. In this paper, we introduce Recurrent Diffusion for Large Scale Parameter Generation (RPG), a novel framework that generates full neural network parameters up to hundreds of millions on a single GPU. Our approach first partitions a networks parameters into non-overlapping tokens, each corresponding to a distinct portion of the model. A recurrent mechanism then learns the inter token relationships, producing prototypes which serve as conditions for a diffusion process that ultimately synthesizes the full parameters. Across a spectrum of architectures and tasks including ResNets, ConvNeXts and ViTs on ImageNet 1K and COCO, and even LoRA based LLMs RPG achieves performance on par with fully trained networks while avoiding excessive memory overhead. Notably, it generalizes beyond its training set to generate valid parameters for previously unseen tasks, highlighting its flexibility in dynamic and open ended scenarios. By overcoming the longstanding memory and scalability barriers, RPG serves as a critical advance in AI generating AI, potentially enabling efficient weight generation at scales previously deemed infeasible.


Faster Vision Mamba is Rebuilt in Minutes via Merged Token Re-training

arXiv.org Artificial Intelligence

Vision Mamba (e.g., Vim) has successfully been integrated into computer vision, and token reduction has yielded promising outcomes in Vision Transformers (ViTs). However, token reduction performs less effectively on Vision Mamba compared to ViTs. Pruning informative tokens in Mamba leads to a high loss of key knowledge and bad performance. This makes it not a good solution for enhancing efficiency in Mamba. Token merging, which preserves more token information than pruning, has demonstrated commendable performance in ViTs. Nevertheless, vanilla merging performance decreases as the reduction ratio increases either, failing to maintain the key knowledge in Mamba. Re-training the token-reduced model enhances the performance of Mamba, by effectively rebuilding the key knowledge. Empirically, pruned Vims only drop up to 0.9% accuracy on ImageNet-1K, recovered by our proposed framework R-MeeTo in our main evaluation. We show how simple and effective the fast recovery can be achieved at minute-level, in particular, a 35.9% accuracy spike over 3 epochs of training on Vim-Ti. Moreover, Vim-Ti/S/B are re-trained within 5/7/17 minutes, and Vim-S only drop 1.3% with 1.2x (up to 1.5x) speed up in inference.


MMBench: Is Your Multi-modal Model an All-around Player?

arXiv.org Artificial Intelligence

Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.