Goto

Collaborating Authors

 Zhao, Vincent


Mixture-of-Experts Meets Instruction Tuning:A Winning Combination for Large Language Models

arXiv.org Artificial Intelligence

Sparse Mixture-of-Experts (MoE) is a neural architecture design that can be utilized to add learnable parameters to Large Language Models (LLMs) without increasing inference cost. Instruction tuning is a technique for training LLMs to follow instructions. We advocate combining these two approaches, as we find that MoE models benefit more from instruction tuning than dense models. In particular, we conduct empirical studies across three experimental setups: (i) Direct finetuning on individual downstream tasks devoid of instruction tuning; (ii) Instructiontuning followed by in-context few-shot or zero-shot generalization on downstream tasks; and (iii) Instruction tuning supplemented by further finetuning on individual downstream tasks. In the first scenario, MoE models overall underperform dense models of identical computational capacity. This narrative, however, dramatically changes with the introduction of instruction tuning (second and third scenario), used independently or in conjunction with task-specific finetuning. Our most powerful model, FLAN-MOE-32B, surpasses the performance of FLAN-PALM-62B on four benchmark tasks, while using only a third of the FLOPs. The advancements embodied byFLAN-MOE inspire a reevaluation of the design principles of large-scale, high-performance language models in the framework of task-agnostic learning.


Scaling Instruction-Finetuned Language Models

arXiv.org Artificial Intelligence

Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.


LaMDA: Language Models for Dialog Applications

arXiv.org Artificial Intelligence

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.


Feature Selection Facilitates Learning Mixtures of Discrete Product Distributions

arXiv.org Machine Learning

Feature selection can facilitate the learning of mixtures of discrete random variables as they arise, e.g. in crowdsourcing tasks. Intuitively, not all workers are equally reliable but, if the less reliable ones could be eliminated, then learning should be more robust. By analogy with Gaussian mixture models, we seek a low-order statistical approach, and here introduce an algorithm based on the (pairwise) mutual information. This induces an order over workers that is well structured for the `one coin' model. More generally, it is justified by a goodness-of-fit measure and is validated empirically. Improvement in real data sets can be substantial.


Stagewise Learning for Sparse Clustering of Discretely-Valued Data

arXiv.org Machine Learning

The performance of EM in learning mixtures of product distributions often depends on the initialization. This can be problematic in crowdsourcing and other applications, e.g. when a small number of 'experts' are diluted by a large number of noisy, unreliable participants. We develop a new EM algorithm that is driven by these experts. In a manner that differs from other approaches, we start from a single mixture class. The algorithm then develops the set of 'experts' in a stagewise fashion based on a mutual information criterion. At each stage EM operates on this subset of the players, effectively regularizing the E rather than the M step. Experiments show that stagewise EM outperforms other initialization techniques for crowdsourcing and neurosciences applications, and can guide a full EM to results comparable to those obtained knowing the exact distribution.