Goto

Collaborating Authors

 Zhao, Tianzhe


Self-supervised Quantized Representation for Seamlessly Integrating Knowledge Graphs with Large Language Models

arXiv.org Artificial Intelligence

Due to the presence of the natural gap between Knowledge Graph (KG) structures and the natural language, the effective integration of holistic structural information of KGs with Large Language Models (LLMs) has emerged as a significant question. To this end, we propose a two-stage framework to learn and apply quantized codes for each entity, aiming for the seamless integration of KGs with LLMs. Firstly, a self-supervised quantized representation (SSQR) method is proposed to compress both KG structural and semantic knowledge into discrete codes (\ie, tokens) that align the format of language sentences. We further design KG instruction-following data by viewing these learned codes as features to directly input to LLMs, thereby achieving seamless integration. The experiment results demonstrate that SSQR outperforms existing unsupervised quantized methods, producing more distinguishable codes. Further, the fine-tuned LLaMA2 and LLaMA3.1 also have superior performance on KG link prediction and triple classification tasks, utilizing only 16 tokens per entity instead of thousands in conventional prompting methods.


PathReasoner: Modeling Reasoning Path with Equivalent Extension for Logical Question Answering

arXiv.org Artificial Intelligence

Logical reasoning task has attracted great interest since it was proposed. Faced with such a task, current competitive models, even large language models (e.g., ChatGPT and PaLM 2), still perform badly. Previous promising LMs struggle in logical consistency modeling and logical structure perception. To this end, we model the logical reasoning task by transforming each logical sample into reasoning paths and propose an architecture \textbf{PathReasoner}. It addresses the task from the views of both data and model. To expand the diversity of the logical samples, we propose an atom extension strategy supported by equivalent logical formulas, to form new reasoning paths. From the model perspective, we design a stack of transformer-style blocks. In particular, we propose a path-attention module to joint model in-atom and cross-atom relations with the high-order diffusion strategy. Experiments show that PathReasoner achieves competitive performances on two logical reasoning benchmarks and great generalization abilities.


Untargeted Adversarial Attack on Knowledge Graph Embeddings

arXiv.org Artificial Intelligence

Knowledge graph embedding (KGE) methods have achieved great success in handling various knowledge graph (KG) downstream tasks. However, KGE methods may learn biased representations on low-quality KGs that are prevalent in the real world. Some recent studies propose adversarial attacks to investigate the vulnerabilities of KGE methods, but their attackers are target-oriented with the KGE method and the target triples to predict are given in advance, which lacks practicability. In this work, we explore untargeted attacks with the aim of reducing the global performances of KGE methods over a set of unknown test triples and conducting systematic analyses on KGE robustness. Considering logic rules can effectively summarize the global structure of a KG, we develop rule-based attack strategies to enhance the attack efficiency. In particular,we consider adversarial deletion which learns rules, applying the rules to score triple importance and delete important triples, and adversarial addition which corrupts the learned rules and applies them for negative triples as perturbations. Extensive experiments on two datasets over three representative classes of KGE methods demonstrate the effectiveness of our proposed untargeted attacks in diminishing the link prediction results. And we also find that different KGE methods exhibit different robustness to untargeted attacks. For example, the robustness of methods engaged with graph neural networks and logic rules depends on the density of the graph. But rule-based methods like NCRL are easily affected by adversarial addition attacks to capture negative rules


Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond

arXiv.org Artificial Intelligence

Logical reasoning consistently plays a fundamental and significant role in the domains of knowledge engineering and artificial intelligence. Recently, Large Language Models (LLMs) have emerged as a noteworthy innovation in natural language processing (NLP), exhibiting impressive achievements across various classic NLP tasks. However, the question of whether LLMs can effectively address the task of logical reasoning, which requires gradual cognitive inference similar to human intelligence, remains unanswered. To this end, we aim to bridge this gap and provide comprehensive evaluations in this paper. Firstly, to offer systematic evaluations, we select fifteen typical logical reasoning datasets and organize them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Additionally, to uncover the logical flaws of LLMs, problematic cases will be attributed to five error types from two dimensions, i.e., evidence selection process and reasoning process. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3,000 samples and covers deductive, inductive and abductive settings. Based on the in-depth evaluations, this paper finally forms a general evaluation scheme of logical reasoning capability from six dimensions. It reflects the pros and cons of LLMs and gives guiding directions for future works.


Mind Reasoning Manners: Enhancing Type Perception for Generalized Zero-shot Logical Reasoning over Text

arXiv.org Artificial Intelligence

Logical reasoning task involves diverse types of complex reasoning over text, based on the form of multiple-choice question answering. Given the context, question and a set of options as the input, previous methods achieve superior performances on the full-data setting. However, the current benchmark dataset has the ideal assumption that the reasoning type distribution on the train split is close to the test split, which is inconsistent with many real application scenarios. To address it, there remain two problems to be studied: (1) How is the zero-shot capability of the models (train on seen types and test on unseen types)? (2) How to enhance the perception of reasoning types for the models? For problem 1, we propose a new benchmark for generalized zero-shot logical reasoning, named ZsLR. It includes six splits based on the three type sampling strategies. For problem 2, a type-aware model TaCo is proposed. It utilizes both the heuristic input reconstruction and the contrastive learning to improve the type perception in the global representation. Extensive experiments on both the zero-shot and full-data settings prove the superiority of TaCo over the state-of-the-art methods. Also, we experiment and verify the generalization capability of TaCo on other logical reasoning dataset.


MoCA: Incorporating Multi-stage Domain Pretraining and Cross-guided Multimodal Attention for Textbook Question Answering

arXiv.org Artificial Intelligence

Textbook Question Answering (TQA) is a complex multimodal task to infer answers given large context descriptions and abundant diagrams. Compared with Visual Question Answering (VQA), TQA contains a large number of uncommon terminologies and various diagram inputs. It brings new challenges to the representation capability of language model for domain-specific spans. And it also pushes the multimodal fusion to a more complex level. To tackle the above issues, we propose a novel model named MoCA, which incorporates multi-stage domain pretraining and multimodal cross attention for the TQA task. Firstly, we introduce a multi-stage domain pretraining module to conduct unsupervised post-pretraining with the span mask strategy and supervised pre-finetune. Especially for domain post-pretraining, we propose a heuristic generation algorithm to employ the terminology corpus. Secondly, to fully consider the rich inputs of context and diagrams, we propose cross-guided multimodal attention to update the features of text, question diagram and instructional diagram based on a progressive strategy. Further, a dual gating mechanism is adopted to improve the model ensemble. The experimental results show the superiority of our model, which outperforms the state-of-the-art methods by 2.21% and 2.43% for validation and test split respectively.