Goto

Collaborating Authors

 Zhao, Shiwan


CS-Dialogue: A 104-Hour Dataset of Spontaneous Mandarin-English Code-Switching Dialogues for Speech Recognition

arXiv.org Artificial Intelligence

Code-switching (CS), the alternation between two or more languages within a single conversation, presents significant challenges for automatic speech recognition (ASR) systems. Existing Mandarin-English code-switching datasets often suffer from limitations in size, spontaneity, and the lack of full-length dialogue recordings with transcriptions, hindering the development of robust ASR models for real-world conversational scenarios. This paper introduces CS-Dialogue, a novel large-scale Mandarin-English code-switching speech dataset comprising 104 hours of spontaneous conversations from 200 speakers. Unlike previous datasets, CS-Dialogue provides full-length dialogue recordings with complete transcriptions, capturing naturalistic code-switching patterns in continuous speech. We describe the data collection and annotation processes, present detailed statistics of the dataset, and establish benchmark ASR performance using state-of-the-art models. Our experiments, using Transformer, Conformer, and Branchformer, demonstrate the challenges of code-switching ASR, and show that existing pre-trained models such as Whisper still have the space to improve. The CS-Dialogue dataset will be made freely available for all academic purposes.


FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching

arXiv.org Artificial Intelligence

To advance continuous-valued token modeling and temporal-coherence enforcement, we propose FELLE, an autoregressive model that integrates language modeling with token-wise flow matching. By leveraging the autoregressive nature of language models and the generative efficacy of flow matching, FELLE effectively predicts continuous-valued tokens (mel-spectrograms). For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step, improving coherence and stability. Furthermore, to enhance synthesis quality, FELLE introduces a coarse-to-fine flow-matching mechanism, generating continuous-valued tokens hierarchically, conditioned on the language model's output. Experimental results demonstrate the potential of incorporating flow-matching techniques in autoregressive mel-spectrogram modeling, leading to significant improvements in TTS generation quality, as shown in https://aka.ms/felle.


SDPO: Segment-Level Direct Preference Optimization for Social Agents

arXiv.org Artificial Intelligence

Social agents powered by large language models (LLMs) can simulate human social behaviors but fall short in handling complex goal-oriented social dialogues. Direct Preference Optimization (DPO) has proven effective in aligning LLM behavior with human preferences across a variety of agent tasks. Existing DPO-based approaches for multi-turn interactions are divided into turn-level and session-level methods. The turn-level method is overly fine-grained, focusing exclusively on individual turns, while session-level methods are too coarse-grained, often introducing training noise. To address these limitations, we propose Segment-Level Direct Preference Optimization (SDPO), which focuses on specific key segments within interactions to optimize multi-turn agent behavior while minimizing training noise. Evaluations on the SOTOPIA benchmark demonstrate that SDPO-tuned agents consistently outperform both existing DPO-based methods and proprietary LLMs like GPT-4o, underscoring SDPO's potential to advance the social intelligence of LLM-based agents. We release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/SDPO.


Enhancing Multimodal Emotion Recognition through Multi-Granularity Cross-Modal Alignment

arXiv.org Artificial Intelligence

Multimodal emotion recognition (MER), leveraging speech and text, has emerged as a pivotal domain within human-computer interaction, demanding sophisticated methods for effective multimodal integration. The challenge of aligning features across these modalities is significant, with most existing approaches adopting a singular alignment strategy. Such a narrow focus not only limits model performance but also fails to address the complexity and ambiguity inherent in emotional expressions. In response, this paper introduces a Multi-Granularity Cross-Modal Alignment (MGCMA) framework, distinguished by its comprehensive approach encompassing distribution-based, instance-based, and token-based alignment modules. This framework enables a multi-level perception of emotional information across modalities. Our experiments on IEMOCAP demonstrate that our proposed method outperforms current state-of-the-art techniques.


DiffEditor: Enhancing Speech Editing with Semantic Enrichment and Acoustic Consistency

arXiv.org Artificial Intelligence

As text-based speech editing becomes increasingly prevalent, the demand for unrestricted free-text editing continues to grow. However, existing speech editing techniques encounter significant challenges, particularly in maintaining intelligibility and acoustic consistency when dealing with out-of-domain (OOD) text. In this paper, we introduce, DiffEditor, a novel speech editing model designed to enhance performance in OOD text scenarios through semantic enrichment and acoustic consistency. To improve the intelligibility of the edited speech, we enrich the semantic information of phoneme embeddings by integrating word embeddings extracted from a pretrained language model. Furthermore, we emphasize that interframe smoothing properties are critical for modeling acoustic consistency, and thus we propose a first-order loss function to promote smoother transitions at editing boundaries and enhance the overall fluency of the edited speech. Experimental results demonstrate that our model achieves state-of-the-art performance in both in-domain and OOD text scenarios.


Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation

arXiv.org Artificial Intelligence

The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs). However, despite their widespread adoption and success, CoT methods often exhibit instability due to their inability to consistently ensure the quality of generated reasoning paths, leading to sub-optimal reasoning performance. To address this challenge, we propose the \textbf{Strategic Chain-of-Thought} (SCoT), a novel methodology designed to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps. SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers. Our experiments across eight challenging reasoning datasets demonstrate significant improvements, including a 21.05\% increase on the GSM8K dataset and 24.13\% on the Tracking\_Objects dataset, respectively, using the Llama3-8b model. Additionally, we extend the SCoT framework to develop a few-shot method with automatically matched demonstrations, yielding even stronger results. These findings underscore the efficacy of SCoT, highlighting its potential to substantially enhance LLM performance in complex reasoning tasks.


Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs

arXiv.org Artificial Intelligence

Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this \href{https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/}{url}.


Improving Zero-Shot Chinese-English Code-Switching ASR with kNN-CTC and Gated Monolingual Datastores

arXiv.org Artificial Intelligence

The kNN-CTC model has proven to be effective for monolingual automatic speech recognition (ASR). However, its direct application to multilingual scenarios like code-switching, presents challenges. Although there is potential for performance improvement, a kNN-CTC model utilizing a single bilingual datastore can inadvertently introduce undesirable noise from the alternative language. To address this, we propose a novel kNN-CTC-based code-switching ASR (CS-ASR) framework that employs dual monolingual datastores and a gated datastore selection mechanism to reduce noise interference. Our method selects the appropriate datastore for decoding each frame, ensuring the injection of language-specific information into the ASR process. We apply this framework to cutting-edge CTC-based models, developing an advanced CS-ASR system. Extensive experiments demonstrate the remarkable effectiveness of our gated datastore mechanism in enhancing the performance of zero-shot Chinese-English CS-ASR.


Better Zero-Shot Reasoning with Role-Play Prompting

arXiv.org Artificial Intelligence

Modern large language models (LLMs), such as ChatGPT, exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities like a Linux terminal. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks, encompassing arithmetic, commonsense reasoning, symbolic reasoning, and more. Leveraging models such as ChatGPT and Llama 2, our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Beyond enhancing contextual understanding, we posit that role-play prompting serves as an implicit Chain-of-Thought (CoT) trigger, thereby improving the quality of reasoning. By comparing our approach with the Zero-Shot-CoT technique, which prompts the model to "think step by step", we further demonstrate that role-play prompting can generate a more effective CoT. This highlights its potential to augment the reasoning capabilities of LLMs.


Uncertainty in Natural Language Processing: Sources, Quantification, and Applications

arXiv.org Artificial Intelligence

As a main field of artificial intelligence, natural language processing (NLP) has achieved remarkable success via deep neural networks. Plenty of NLP tasks have been addressed in a unified manner, with various tasks being associated with each other through sharing the same paradigm. However, neural networks are black boxes and rely on probability computation. Making mistakes is inevitable. Therefore, estimating the reliability and trustworthiness (in other words, uncertainty) of neural networks becomes a key research direction, which plays a crucial role in reducing models' risks and making better decisions. Therefore, in this survey, we provide a comprehensive review of uncertainty-relevant works in the NLP field. Considering the data and paradigms characteristics, we first categorize the sources of uncertainty in natural language into three types, including input, system, and output. Then, we systemically review uncertainty quantification approaches and the main applications. Finally, we discuss the challenges of uncertainty estimation in NLP and discuss potential future directions, taking into account recent trends in the field. Though there have been a few surveys about uncertainty estimation, our work is the first to review uncertainty from the NLP perspective.