Zhao, Puning
On Theoretical Limits of Learning with Label Differential Privacy
Zhao, Puning, Ma, Chuan, Shen, Li, Wang, Shaowei, Fan, Rongfei
Label differential privacy (DP) is designed for learning problems involving private labels and public features. While various methods have been proposed for learning under label DP, the theoretical limits remain largely unexplored. In this paper, we investigate the fundamental limits of learning with label DP in both local and central models for both classification and regression tasks, characterized by minimax convergence rates. We establish lower bounds by converting each task into a multiple hypothesis testing problem and bounding the test error. Additionally, we develop algorithms that yield matching upper bounds. Our results demonstrate that under label local DP (LDP), the risk has a significantly faster convergence rate than that under full LDP, i.e. protecting both features and labels, indicating the advantages of relaxing the DP definition to focus solely on labels. In contrast, under the label central DP (CDP), the risk is only reduced by a constant factor compared to full DP, indicating that the relaxation of CDP only has limited benefits on the performance.
Learning with User-Level Local Differential Privacy
Zhao, Puning, Shen, Li, Fan, Rongfei, Li, Qingming, Wu, Huiwen, Wu, Jiafei, Liu, Zhe
User-level privacy is important in distributed systems. Previous research primarily focuses on the central model, while the local models have received much less attention. Under the central model, user-level DP is strictly stronger than the item-level one. However, under the local model, the relationship between user-level and item-level LDP becomes more complex, thus the analysis is crucially different. In this paper, we first analyze the mean estimation problem and then apply it to stochastic optimization, classification, and regression. In particular, we propose adaptive strategies to achieve optimal performance at all privacy levels. Moreover, we also obtain information-theoretic lower bounds, which show that the proposed methods are minimax optimal up to logarithmic factors. Unlike the central DP model, where user-level DP always leads to slower convergence, our result shows that under the local model, the convergence rates are nearly the same between user-level and item-level cases for distributions with bounded support. For heavy-tailed distributions, the user-level rate is even faster than the item-level one.
CG-FedLLM: How to Compress Gradients in Federated Fune-tuning for Large Language Models
Wu, Huiwen, Li, Xiaohan, Zhang, Deyi, Xu, Xiaogang, Wu, Jiafei, Zhao, Puning, Liu, Zhe
The success of current Large-Language Models (LLMs) hinges on extensive training data that is collected and stored centrally, called Centralized Learning (CL). However, such a collection manner poses a privacy threat, and one potential solution is Federated Learning (FL), which transfers gradients, not raw data, among clients. Unlike traditional networks, FL for LLMs incurs significant communication costs due to their tremendous parameters. This study introduces an innovative approach to compress gradients to improve communication efficiency during LLM FL, formulating the new FL pipeline named CG-FedLLM. This approach integrates an encoder on the client side to acquire the compressed gradient features and a decoder on the server side to reconstruct the gradients. We also developed a novel training strategy that comprises Temporal-ensemble Gradient-Aware Pre-training (TGAP) to identify characteristic gradients of the target model and Federated AutoEncoder-Involved Fine-tuning (FAF) to compress gradients adaptively. Extensive experiments confirm that our approach reduces communication costs and improves performance (e.g., average 3 points increment compared with traditional CL- and FL-based fine-tuning with LlaMA on a well-recognized benchmark, C-Eval). This improvement is because our encoder-decoder, trained via TGAP and FAF, can filter gradients while selectively preserving critical features. Furthermore, we present a series of experimental analyses focusing on the signal-to-noise ratio, compression rate, and robustness within this privacy-centric framework, providing insight into developing more efficient and secure LLMs.
Enhancing Learning with Label Differential Privacy by Vector Approximation
Zhao, Puning, Fan, Rongfei, Wu, Huiwen, Li, Qingming, Wu, Jiafei, Liu, Zhe
Label differential privacy (DP) is a framework that protects the privacy of labels in training datasets, while the feature vectors are public. Existing approaches protect the privacy of labels by flipping them randomly, and then train a model to make the output approximate the privatized label. However, as the number of classes $K$ increases, stronger randomization is needed, thus the performances of these methods become significantly worse. In this paper, we propose a vector approximation approach, which is easy to implement and introduces little additional computational overhead. Instead of flipping each label into a single scalar, our method converts each label into a random vector with $K$ components, whose expectations reflect class conditional probabilities. Intuitively, vector approximation retains more information than scalar labels. A brief theoretical analysis shows that the performance of our method only decays slightly with $K$. Finally, we conduct experiments on both synthesized and real datasets, which validate our theoretical analysis as well as the practical performance of our method.
Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning
Li, Qingming, Miao, Juzheng, Zhao, Puning, Zhou, Li, Ji, Shouling, Zhou, Bowen, Liu, Furui
Client selection significantly affects the system convergence efficiency and is a crucial problem in federated learning. Existing methods often select clients by evaluating each round individually and overlook the necessity for long-term optimization, resulting in suboptimal performance and potential fairness issues. In this study, we propose a novel client selection strategy designed to emulate the performance achieved with full client participation. In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set. In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected. This constraint guides the client selection process from a long-term perspective. We employ Lyapunov optimization and submodular functions to efficiently identify the optimal subset of clients, and provide a theoretical analysis of the convergence ability. Experiments demonstrate that the proposed strategy significantly improves both accuracy and fairness compared to previous methods while also exhibiting efficiency by incurring minimal time overhead.
A Huber Loss Minimization Approach to Mean Estimation under User-level Differential Privacy
Zhao, Puning, Lai, Lifeng, Shen, Li, Li, Qingming, Wu, Jiafei, Liu, Zhe
Privacy protection of users' entire contribution of samples is important in distributed systems. The most effective approach is the two-stage scheme, which finds a small interval first and then gets a refined estimate by clipping samples into the interval. However, the clipping operation induces bias, which is serious if the sample distribution is heavy-tailed. Besides, users with large local sample sizes can make the sensitivity much larger, thus the method is not suitable for imbalanced users. Motivated by these challenges, we propose a Huber loss minimization approach to mean estimation under user-level differential privacy. The connecting points of Huber loss can be adaptively adjusted to deal with imbalanced users. Moreover, it avoids the clipping operation, thus significantly reducing the bias compared with the two-stage approach. We provide a theoretical analysis of our approach, which gives the noise strength needed for privacy protection, as well as the bound of mean squared error. The result shows that the new method is much less sensitive to the imbalance of user-wise sample sizes and the tail of sample distributions. Finally, we perform numerical experiments to validate our theoretical analysis.
Soft Label PU Learning
Zhao, Puning, Deng, Jintao, Cheng, Xu
PU learning refers to the classification problem in which only part of positive samples are labeled. Existing PU learning methods treat unlabeled samples equally. However, in many real tasks, from common sense or domain knowledge, some unlabeled samples are more likely to be positive than others. In this paper, we propose soft label PU learning, in which unlabeled data are assigned soft labels according to their probabilities of being positive. Considering that the ground truth of T PR, FPR, and AUC are unknown, we then design PU counterparts of these metrics to evaluate the performances of soft label PU learning methods within validation data. We show that these new designed PU metrics are good substitutes for the real metrics. After that, a method that optimizes such metrics is proposed. Experiments on public datasets and real datasets for anti-cheat services from Tencent games demonstrate the effectiveness of our proposed method.
Robust Nonparametric Regression under Poisoning Attack
Zhao, Puning, Wan, Zhiguo
This paper studies robust nonparametric regression, in which an adversarial attacker can modify the values of up to $q$ samples from a training dataset of size $N$. Our initial solution is an M-estimator based on Huber loss minimization. Compared with simple kernel regression, i.e. the Nadaraya-Watson estimator, this method can significantly weaken the impact of malicious samples on the regression performance. We provide the convergence rate as well as the corresponding minimax lower bound. The result shows that, with proper bandwidth selection, $\ell_\infty$ error is minimax optimal. The $\ell_2$ error is optimal with relatively small $q$, but is suboptimal with larger $q$. The reason is that this estimator is vulnerable if there are many attacked samples concentrating in a small region. To address this issue, we propose a correction method by projecting the initial estimate to the space of Lipschitz functions. The final estimate is nearly minimax optimal for arbitrary $q$, up to a $\ln N$ factor.
A Huber Loss Minimization Approach to Byzantine Robust Federated Learning
Zhao, Puning, Yu, Fei, Wan, Zhiguo
Federated learning systems are susceptible to adversarial attacks. To combat this, we introduce a novel aggregator based on Huber loss minimization, and provide a comprehensive theoretical analysis. Under independent and identically distributed (i.i.d) assumption, our approach has several advantages compared to existing methods. Firstly, it has optimal dependence on $\epsilon$, which stands for the ratio of attacked clients. Secondly, our approach does not need precise knowledge of $\epsilon$. Thirdly, it allows different clients to have unequal data sizes. We then broaden our analysis to include non-i.i.d data, such that clients have slightly different distributions.
Minimax Optimal $Q$ Learning with Nearest Neighbors
Zhao, Puning, Lai, Lifeng
$Q$ learning is a popular model free reinforcement learning method. Most of existing works focus on analyzing $Q$ learning for finite state and action spaces. If the state space is continuous, then the original $Q$ learning method can not be directly used. A modification of the original $Q$ learning method was proposed in (Shah and Xie, 2018), which estimates $Q$ values with nearest neighbors. Such modification makes $Q$ learning suitable for continuous state space. (Shah and Xie, 2018) shows that the convergence rate of estimated $Q$ function is $\tilde{O}(T^{-1/(d+3)})$, which is slower than the minimax lower bound $\tilde{\Omega}(T^{-1/(d+2)})$, indicating that this method is not efficient. This paper proposes two new $Q$ learning methods to bridge the gap of convergence rates in (Shah and Xie, 2018), with one of them being offline, while the other is online. Despite that we still use nearest neighbor approach to estimate $Q$ function, the algorithms are crucially different from (Shah and Xie, 2018). In particular, we replace the kernel nearest neighbor in discretized region with a direct nearest neighbor approach. Consequently, our approach significantly improves the convergence rate. Moreover, the time complexity is also significantly improved in high dimensional state spaces. Our analysis shows that both offline and online methods are minimax rate optimal.