Goto

Collaborating Authors

 Zhao, Liang


Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Spatial Reasoning Questions

arXiv.org Artificial Intelligence

Spatial reasoning remains a challenge for Large Language Models (LLMs), which struggle with spatial data retrieval and reasoning. We propose Spatial Retrieval-Augmented Generation (Spatial-RAG), a framework that extends RAG to spatial tasks by integrating sparse spatial retrieval (spatial databases) and dense semantic retrieval (LLM-based similarity). A multi-objective ranking strategy balances spatial constraints and semantic relevance, while an LLM-guided generator ensures coherent responses. Experiments on a real-world tourism dataset show that Spatial-RAG significantly improves spatial question answering, bridging the gap between LLMs and spatial intelligence.


AutoTestForge: A Multidimensional Automated Testing Framework for Natural Language Processing Models

arXiv.org Artificial Intelligence

In recent years, the application of behavioral testing in Natural Language Processing (NLP) model evaluation has experienced a remarkable and substantial growth. However, the existing methods continue to be restricted by the requirements for manual labor and the limited scope of capability assessment. To address these limitations, we introduce AutoTestForge, an automated and multidimensional testing framework for NLP models in this paper. Within AutoTestForge, through the utilization of Large Language Models (LLMs) to automatically generate test templates and instantiate them, manual involvement is significantly reduced. Additionally, a mechanism for the validation of test case labels based on differential testing is implemented which makes use of a multi-model voting system to guarantee the quality of test cases. The framework also extends the test suite across three dimensions, taxonomy, fairness, and robustness, offering a comprehensive evaluation of the capabilities of NLP models. This expansion enables a more in-depth and thorough assessment of the models, providing valuable insights into their strengths and weaknesses. A comprehensive evaluation across sentiment analysis (SA) and semantic textual similarity (STS) tasks demonstrates that AutoTestForge consistently outperforms existing datasets and testing tools, achieving higher error detection rates (an average of $30.89\%$ for SA and $34.58\%$ for STS). Moreover, different generation strategies exhibit stable effectiveness, with error detection rates ranging from $29.03\% - 36.82\%$.


From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems

arXiv.org Artificial Intelligence

Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.


PL-VIWO: A Lightweight and Robust Point-Line Monocular Visual Inertial Wheel Odometry

arXiv.org Artificial Intelligence

-- This paper presents a novel tightly coupled Filter-based monocular visual-inertial-wheel odometry (VIWO) system for ground robots, designed to deliver accurate and robust localization in long-term complex outdoor navigation scenarios. As an external sensor, the camera enhances localization performance by introducing visual constraints. However, obtaining a sufficient number of effective visual features is often challenging, particularly in dynamic or low-texture environments. T o address this issue, we incorporate the line features for additional geometric constraints. Unlike traditional approaches that treat point and line features independently, our method exploits the geometric relationships between points and lines in 2D images, enabling fast and robust line matching and triangulation. Additionally, we introduce Motion Consistency Check (MCC) to filter out potential dynamic points, ensuring the effectiveness of point feature updates. The proposed system was evaluated on publicly available datasets and benchmarked against state-of-the-art methods. Experimental results demonstrate superior performance in terms of accuracy, robustness, and efficiency.


Network Tomography with Path-Centric Graph Neural Network

arXiv.org Artificial Intelligence

Network tomography is a crucial problem in network monitoring, where the observable path performance metric values are used to infer the unobserved ones, making it essential for tasks such as route selection, fault diagnosis, and traffic control. However, most existing methods either assume complete knowledge of network topology and metric formulas-an unrealistic expectation in many real-world scenarios with limited observability-or rely entirely on black-box end-to-end models. To tackle this, in this paper, we argue that a good network tomography requires synergizing the knowledge from both data and appropriate inductive bias from (partial) prior knowledge. To see this, we propose Deep Network Tomography (DeepNT), a novel framework that leverages a path-centric graph neural network to predict path performance metrics without relying on predefined hand-crafted metrics, assumptions, or the real network topology. The path-centric graph neural network learns the path embedding by inferring and aggregating the embeddings of the sequence of nodes that compose this path. Training path-centric graph neural networks requires learning the neural netowrk parameters and network topology under discrete constraints induced by the observed path performance metrics, which motivates us to design a learning objective that imposes connectivity and sparsity constraints on topology and path performance triangle inequality on path performance. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of DeepNT in predicting performance metrics and inferring graph topology compared to state-of-the-art methods.


Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction

arXiv.org Artificial Intelligence

Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.


Towards Environment-Sensitive Molecular Inference via Mixed Integer Linear Programming

arXiv.org Artificial Intelligence

Traditional QSAR/QSPR and inverse QSAR/QSPR methods often assume that chemical properties are dictated by single molecules, overlooking the influence of molecular interactions and environmental factors. In this paper, we introduce a novel QSAR/QSPR framework that can capture the combined effects of multiple molecules (e.g., small molecules or polymers) and experimental conditions on property values. We design a feature function to integrate the information of multiple molecules and the environment. Specifically, for the property Flory-Huggins $\chi$-parameter, which characterizes the thermodynamic properties between the solute and the solvent, and varies in temperatures, we demonstrate through computational experimental results that our approach can achieve a competitively high learning performance compared to existing works on predicting $\chi$-parameter values, while inferring the solute polymers with up to 50 non-hydrogen atoms in their monomer forms in a relatively short time. A comparison study with the simulation software J-OCTA demonstrates that the polymers inferred by our methods are of high quality.


Unhackable Temporal Rewarding for Scalable Video MLLMs

arXiv.org Artificial Intelligence

In the pursuit of superior video-processing MLLMs, we have encountered a perplexing paradox: the "anti-scaling law", where more data and larger models lead to worse performance. This study unmasks the culprit: "temporal hacking", a phenomenon where models shortcut by fixating on select frames, missing the full video narrative. In this work, we systematically establish a comprehensive theory of temporal hacking, defining it from a reinforcement learning perspective, introducing the Temporal Perplexity (TPL) score to assess this misalignment, and proposing the Unhackable Temporal Rewarding (UTR) framework to mitigate the temporal hacking. Both theoretically and empirically, TPL proves to be a reliable indicator of temporal modeling quality, correlating strongly with frame activation patterns. Extensive experiments reveal that UTR not only counters temporal hacking but significantly elevates video comprehension capabilities. This work not only advances video-AI systems but also illuminates the critical importance of aligning proxy rewards with true objectives in MLLM development.


Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model

arXiv.org Artificial Intelligence

We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.


Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

arXiv.org Artificial Intelligence

Long-context modeling is crucial for next-generation language models, yet the high computational cost of standard attention mechanisms poses significant computational challenges. Sparse attention offers a promising direction for improving efficiency while maintaining model capabilities. We present NSA, a Natively trainable Sparse Attention mechanism that integrates algorithmic innovations with hardware-aligned optimizations to achieve efficient long-context modeling. NSA employs a dynamic hierarchical sparse strategy, combining coarse-grained token compression with fine-grained token selection to preserve both global context awareness and local precision. Our approach advances sparse attention design with two key innovations: (1) We achieve substantial speedups through arithmetic intensity-balanced algorithm design, with implementation optimizations for modern hardware. (2) We enable end-to-end training, reducing pretraining computation without sacrificing model performance. As shown in Figure 1, experiments show the model pretrained with NSA maintains or exceeds Full Attention models across general benchmarks, long-context tasks, and instruction-based reasoning. Meanwhile, NSA achieves substantial speedups over Full Attention on 64k-length sequences across decoding, forward propagation, and backward propagation, validating its efficiency throughout the model lifecycle.