Zhao, Li
AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence
Liu, Yuliang, Lu, Junjie, Chen, Zhaoling, Qu, Chaofeng, Liu, Jason Klein, Liu, Chonghan, Cai, Zefan, Xia, Yunhui, Zhao, Li, Bian, Jiang, Zhang, Chuheng, Shen, Wei, Lin, Zhouhan
Current approaches for training Process Reward Models (PRMs) often involve breaking down responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length into a fixed size. These approaches overlook the fact that specific words do not typically mark true decision points in a text. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word. This division method provides more decision-making information at each step, enhancing downstream tasks, such as reward model learning. Moreover, our method does not require manual annotation. We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks. Experimental results indicate that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. In addition, we provide a thorough analysis and case study on the PRM's performance, transferability, and generalization capabilities.
IGOR: Image-GOal Representations are the Atomic Control Units for Foundation Models in Embodied AI
Chen, Xiaoyu, Guo, Junliang, He, Tianyu, Zhang, Chuheng, Zhang, Pushi, Yang, Derek Cathera, Zhao, Li, Bian, Jiang
We introduce Image-GOal Representations (IGOR), aiming to learn a unified, semantically consistent action space across human and various robots. Through this unified latent action space, IGOR enables knowledge transfer among large-scale robot and human activity data. We achieve this by compressing visual changes between an initial image and its goal state into latent actions. IGOR allows us to generate latent action labels for internet-scale video data. This unified latent action space enables the training of foundation policy and world models across a wide variety of tasks performed by both robots and humans. We demonstrate that: (1) IGOR learns a semantically consistent action space for both human and robots, characterizing various possible motions of objects representing the physical interaction knowledge; (2) IGOR can "migrate" the movements of the object in the one video to other videos, even across human and robots, by jointly using the latent action model and world model; (3) IGOR can learn to align latent actions with natural language through the foundation policy model, and integrate latent actions with a low-level policy model to achieve effective robot control. We believe IGOR opens new possibilities for human-to-robot knowledge transfer and control.
A MgNO Method for Multiphase Flow in Porous Media
Liu, Xinliang, Yang, Xia, Zhang, Chen-Song, Zhang, Lian, Zhao, Li
This research investigates the application of Multigrid Neural Operator (MgNO), a neural operator architecture inspired by multigrid methods, in the simulation for multiphase flow within porous media. The architecture is adjusted to manage a variety of crucial factors, such as permeability and porosity heterogeneity. The study extendes MgNO to time-dependent porous media flow problems and validate its accuracy in predicting essential aspects of multiphase flows. Furthermore, the research provides a detailed comparison between MgNO and Fourier Neural Opeartor (FNO), which is one of the most popular neural operator methods, on their performance regarding prediction error accumulation over time. This aspect provides valuable insights into the models' long-term predictive stability and reliability. The study demonstrates MgNO's capability to effectively simulate multiphase flow problems, offering considerable time savings compared to traditional simulation methods, marking an advancement in integrating data-driven methodologies in geoscience applications.
DPO Meets PPO: Reinforced Token Optimization for RLHF
Zhong, Han, Feng, Guhao, Xiong, Wei, Zhao, Li, He, Di, Bian, Jiang, Wang, Liwei
In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (\texttt{RTO}), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, \texttt{RTO} is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, \texttt{RTO} innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.
Empowering Large Language Models on Robotic Manipulation with Affordance Prompting
Cheng, Guangran, Zhang, Chuheng, Cai, Wenzhe, Zhao, Li, Sun, Changyin, Bian, Jiang
While large language models (LLMs) are successful in completing various language processing tasks, they easily fail to interact with the physical world by generating control sequences properly. We find that the main reason is that LLMs are not grounded in the physical world. Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies, making it hard to adapt to new tasks. In contrast, we aim to address this problem and explore the possibility to prompt pre-trained LLMs to accomplish a series of robotic manipulation tasks in a training-free paradigm. Accordingly, we propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner (that generates high-level plans) and the motion controller (that generates low-level control sequences). To ground these plans and control sequences on the physical world, we develop the affordance prompting technique that stimulates the LLM to 1) predict the consequences of generated plans and 2) generate affordance values for relevant objects. Empirically, we evaluate the effectiveness of LLM+A in various language-conditioned robotic manipulation tasks, which show that our approach substantially improves performance by enhancing the feasibility of generated plans and control and can easily generalize to different environments.
Pre-Trained Large Language Models for Industrial Control
Song, Lei, Zhang, Chuheng, Zhao, Li, Bian, Jiang
For industrial control, developing high-performance controllers with few samples and low technical debt is appealing. Foundation models, possessing rich prior knowledge obtained from pre-training with Internet-scale corpus, have the potential to be a good controller with proper prompts. In this paper, we take HVAC (Heating, Ventilation, and Air Conditioning) building control as an example to examine the ability of GPT-4 (one of the first-tier foundation models) as the controller. To control HVAC, we wrap the task as a language game by providing text including a short description for the task, several selected demonstrations, and the current observation to GPT-4 on each step and execute the actions responded by GPT-4. We conduct series of experiments to answer the following questions: 1)~How well can GPT-4 control HVAC? 2)~How well can GPT-4 generalize to different scenarios for HVAC control? 3) How different parts of the text context affect the performance? In general, we found GPT-4 achieves the performance comparable to RL methods with few samples and low technical debt, indicating the potential of directly applying foundation models to industrial control tasks.
Learning Multi-Agent Intention-Aware Communication for Optimal Multi-Order Execution in Finance
Fang, Yuchen, Tang, Zhenggang, Ren, Kan, Liu, Weiqing, Zhao, Li, Bian, Jiang, Li, Dongsheng, Zhang, Weinan, Yu, Yong, Liu, Tie-Yan
Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.
A Versatile Multi-Agent Reinforcement Learning Benchmark for Inventory Management
Yang, Xianliang, Liu, Zhihao, Jiang, Wei, Zhang, Chuheng, Zhao, Li, Song, Lei, Bian, Jiang
Multi-agent reinforcement learning (MARL) models multiple agents that interact and learn within a shared environment. This paradigm is applicable to various industrial scenarios such as autonomous driving, quantitative trading, and inventory management. However, applying MARL to these real-world scenarios is impeded by many challenges such as scaling up, complex agent interactions, and non-stationary dynamics. To incentivize the research of MARL on these challenges, we develop MABIM (Multi-Agent Benchmark for Inventory Management) which is a multi-echelon, multi-commodity inventory management simulator that can generate versatile tasks with these different challenging properties. Based on MABIM, we evaluate the performance of classic operations research (OR) methods and popular MARL algorithms on these challenging tasks to highlight their weaknesses and potential.
Asking Before Action: Gather Information in Embodied Decision Making with Language Models
Chen, Xiaoyu, Zhang, Shenao, Zhang, Pushi, Zhao, Li, Chen, Jianyu
With strong capabilities of reasoning and a generic understanding of the world, Large Language Models (LLMs) have shown great potential in building versatile embodied decision making agents capable of performing diverse tasks. However, when deployed to unfamiliar environments, we show that LLM agents face challenges in efficiently gathering necessary information, leading to suboptimal performance. On the other hand, in unfamiliar scenarios, human individuals often seek additional information from their peers before taking action, leveraging external knowledge to avoid unnecessary trial and error. Building upon this intuition, we propose \textit{Asking Before Action} (ABA), a method that empowers the agent to proactively query external sources for pertinent information using natural language during their interactions in the environment. In this way, the agent is able to enhance its efficiency and performance by mitigating wasteful steps and circumventing the difficulties associated with exploration in unfamiliar environments. We empirically evaluate our method on an embodied decision making benchmark, ALFWorld, and demonstrate that despite modest modifications in prompts, our method exceeds baseline LLM agents by more than $40$%. Further experiments on two variants of ALFWorld illustrate that by imitation learning, ABA effectively retains and reuses queried and known information in subsequent tasks, mitigating the need for repetitive inquiries. Both qualitative and quantitative results exhibit remarkable performance on tasks that previous methods struggle to solve.
Towards Generalizable Reinforcement Learning for Trade Execution
Zhang, Chuheng, Duan, Yitong, Chen, Xiaoyu, Chen, Jianyu, Li, Jian, Zhao, Li
Optimized trade execution is to sell (or buy) a given amount of assets in a given time with the lowest possible trading cost. Recently, reinforcement learning (RL) has been applied to optimized trade execution to learn smarter policies from market data. However, we find that many existing RL methods exhibit considerable overfitting which prevents them from real deployment. In this paper, we provide an extensive study on the overfitting problem in optimized trade execution. First, we model the optimized trade execution as offline RL with dynamic context (ORDC), where the context represents market variables that cannot be influenced by the trading policy and are collected in an offline manner. Under this framework, we derive the generalization bound and find that the overfitting issue is caused by large context space and limited context samples in the offline setting. Accordingly, we propose to learn compact representations for context to address the overfitting problem, either by leveraging prior knowledge or in an end-to-end manner. To evaluate our algorithms, we also implement a carefully designed simulator based on historical limit order book (LOB) data to provide a high-fidelity benchmark for different algorithms. Our experiments on the high-fidelity simulator demonstrate that our algorithms can effectively alleviate overfitting and achieve better performance.