Zhao, Jing
Layout2Rendering: AI-aided Greenspace design
Chen, Ran, Lian, Zeke, He, Yueheng, Ling, Xiao, Yang, Fuyu, Yao, Xueqi, Yi, Xingjian, Zhao, Jing
In traditional human living environment landscape design, the establishment of three-dimensional models is an essential step for designers to intuitively present the spatial relationships of design elements, as well as a foundation for conducting landscape analysis on the site. Rapidly and effectively generating beautiful and realistic landscape spaces is a significant challenge faced by designers. Although generative design has been widely applied in related fields, they mostly generate three-dimensional models through the restriction of indicator parameters. However, the elements of landscape design are complex and have unique requirements, making it difficult to generate designs from the perspective of indicator limitations. To address these issues, this study proposes a park space generative design system based on deep learning technology. This system generates design plans based on the topological relationships of landscape elements, then vectorizes the plan element information, and uses Grasshopper to generate three-dimensional models while synchronously fine-tuning parameters, rapidly completing the entire process from basic site conditions to model effect analysis. Experimental results show that: (1) the system, with the aid of AI-assisted technology, can rapidly generate space green space schemes that meet the designer's perspective based on site conditions; (2) this study has vectorized and three-dimensionalized various types of landscape design elements based on semantic information; (3) the analysis and visualization module constructed in this study can perform landscape analysis on the generated three-dimensional models and produce node effect diagrams, allowing users to modify the design in real time based on the effects, thus enhancing the system's interactivity.
KnowLA: Enhancing Parameter-efficient Finetuning with Knowledgeable Adaptation
Luo, Xindi, Sun, Zequn, Zhao, Jing, Zhao, Zhe, Hu, Wei
Parameter-efficient finetuning (PEFT) is a key technique for adapting large language models (LLMs) to downstream tasks. In this paper, we study leveraging knowledge graph embeddings to improve the effectiveness of PEFT. We propose a knowledgeable adaptation method called KnowLA. It inserts an adaptation layer into an LLM to integrate the embeddings of entities appearing in the input text. The adaptation layer is trained in combination with LoRA on instruction data. Experiments on six benchmarks with two popular LLMs and three knowledge graphs demonstrate the effectiveness and robustness of KnowLA. We show that \modelname can help activate the relevant parameterized knowledge in an LLM to answer a question without changing its parameters or input prompts.
Research on the Laws of Multimodal Perception and Cognition from a Cross-cultural Perspective -- Taking Overseas Chinese Gardens as an Example
Chen, Ran, Yao, Xueqi, Zhao, Jing, Xu, Shuhan, Zhang, Sirui, Mao, Yijun
This study aims to explore the complex relationship between perceptual and cognitive interactions in multimodal data analysis,with a specific emphasis on spatial experience design in overseas Chinese gardens. It is found that evaluation content and images on social media can reflect individuals' concerns and sentiment responses, providing a rich data base for cognitive research that contains both sentimental and image-based cognitive information. Leveraging deep learning techniques, we analyze textual and visual data from social media, thereby unveiling the relationship between people's perceptions and sentiment cognition within the context of overseas Chinese gardens. In addition, our study introduces a multi-agent system (MAS)alongside AI agents. Each agent explores the laws of aesthetic cognition through chat scene simulation combined with web search. This study goes beyond the traditional approach of translating perceptions into sentiment scores, allowing for an extension of the research methodology in terms of directly analyzing texts and digging deeper into opinion data. This study provides new perspectives for understanding aesthetic experience and its impact on architecture and landscape design across diverse cultural contexts, which is an essential contribution to the field of cultural communication and aesthetic understanding.
MST-GAT: A Multimodal Spatial-Temporal Graph Attention Network for Time Series Anomaly Detection
Ding, Chaoyue, Sun, Shiliang, Zhao, Jing
Multimodal time series (MTS) anomaly detection is crucial for maintaining the safety and stability of working devices (e.g., water treatment system and spacecraft), whose data are characterized by multivariate time series with diverse modalities. Although recent deep learning methods show great potential in anomaly detection, they do not explicitly capture spatial-temporal relationships between univariate time series of different modalities, resulting in more false negatives and false positives. In this paper, we propose a multimodal spatial-temporal graph attention network (MST-GAT) to tackle this problem. MST-GAT first employs a multimodal graph attention network (M-GAT) and a temporal convolution network to capture the spatial-temporal correlation in multimodal time series. Specifically, M-GAT uses a multi-head attention module and two relational attention modules (i.e., intra- and inter-modal attention) to model modal correlations explicitly. Furthermore, MST-GAT optimizes the reconstruction and prediction modules simultaneously. Experimental results on four multimodal benchmarks demonstrate that MST-GAT outperforms the state-of-the-art baselines. Further analysis indicates that MST-GAT strengthens the interpretability of detected anomalies by locating the most anomalous univariate time series.
Null-text Guidance in Diffusion Models is Secretly a Cartoon-style Creator
Zhao, Jing, Zheng, Heliang, Wang, Chaoyue, Lan, Long, Huang, Wanrong, Yang, Wenjing
Classifier-free guidance is an effective sampling technique in diffusion models that has been widely adopted. The main idea is to extrapolate the model in the direction of text guidance and away from null-text guidance. In this paper, we demonstrate that null-text guidance in diffusion models is secretly a cartoon-style creator, i.e., the generated images can be efficiently transformed into cartoons by simply perturbing the null-text guidance. Specifically, we proposed two disturbance methods, i.e., Rollback disturbance (Back-D) and Image disturbance (Image-D), to construct misalignment between the noisy images used for predicting null-text guidance and text guidance (subsequently referred to as \textbf{null-text noisy image} and \textbf{text noisy image} respectively) in the sampling process. Back-D achieves cartoonization by altering the noise level of null-text noisy image via replacing $x_t$ with $x_{t+\Delta t}$. Image-D, alternatively, produces high-fidelity, diverse cartoons by defining $x_t$ as a clean input image, which further improves the incorporation of finer image details. Through comprehensive experiments, we delved into the principle of noise disturbing for null-text and uncovered that the efficacy of disturbance depends on the correlation between the null-text noisy image and the source image. Moreover, our proposed techniques, which can generate cartoon images and cartoonize specific ones, are training-free and easily integrated as a plug-and-play component in any classifier-free guided diffusion model. Project page is available at \url{https://nulltextforcartoon.github.io/}.
MagicFusion: Boosting Text-to-Image Generation Performance by Fusing Diffusion Models
Zhao, Jing, Zheng, Heliang, Wang, Chaoyue, Lan, Long, Yang, Wenjing
The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at https://magicfusion.github.io/.
TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities
Zhao, Zhe, Li, Yudong, Hou, Cheng, Zhao, Jing, Tian, Rong, Liu, Weijie, Chen, Yiren, Sun, Ningyuan, Liu, Haoyan, Mao, Weiquan, Guo, Han, Guo, Weigang, Wu, Taiqiang, Zhu, Tao, Shi, Wenhang, Chen, Chen, Huang, Shan, Chen, Sihong, Liu, Liqun, Li, Feifei, Chen, Xiaoshuai, Sun, Xingwu, Kang, Zhanhui, Du, Xiaoyong, Shen, Linlin, Yan, Kimmo
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
The THUEE System Description for the IARPA OpenASR21 Challenge
Zhao, Jing, Wang, Haoyu, Li, Jinpeng, Chai, Shuzhou, Wang, Guan-Bo, Chen, Guoguo, Zhang, Wei-Qiang
This paper describes the THUEE team's speech recognition system for the IARPA Open Automatic Speech Recognition Challenge (OpenASR21), with further experiment explorations. We achieve outstanding results under both the Constrained and Constrained-plus training conditions. For the Constrained training condition, we construct our basic ASR system based on the standard hybrid architecture. To alleviate the Out-Of-Vocabulary (OOV) problem, we extend the pronunciation lexicon using Grapheme-to-Phoneme (G2P) techniques for both OOV and potential new words. Standard acoustic model structures such as CNN-TDNN-F and CNN-TDNN-F-A are adopted. In addition, multiple data augmentation techniques are applied. For the Constrained-plus training condition, we use the self-supervised learning framework wav2vec2.0. We experiment with various fine-tuning techniques with the Connectionist Temporal Classification (CTC) criterion on top of the publicly available pre-trained model XLSR-53. We find that the frontend feature extractor plays an important role when applying the wav2vec2.0 pre-trained model to the encoder-decoder based CTC/Attention ASR architecture. Extra improvements can be achieved by using the CTC model finetuned in the target language as the frontend feature extractor.
An Intelligent Question Answering System based on Power Knowledge Graph
Tang, Yachen, Han, Haiyun, Yu, Xianmao, Zhao, Jing, Liu, Guangyi, Wei, Longfei
The intelligent question answering (IQA) system can accurately capture users' search intention by understanding the natural language questions, searching relevant content efficiently from a massive knowledge-base, and returning the answer directly to the user. Since the IQA system can save inestimable time and workforce in data search and reasoning, it has received more and more attention in data science and artificial intelligence. This article introduced a domain knowledge graph using the graph database and graph computing technologies from massive heterogeneous data in electric power. It then proposed an IQA system based on the electrical power knowledge graph to extract the intent and constraints of natural interrogation based on the natural language processing (NLP) method, to construct graph data query statements via knowledge reasoning, and to complete the accurate knowledge search and analysis to provide users with an intuitive visualization. This method thoroughly combined knowledge graph and graph computing characteristics, realized high-speed multi-hop knowledge correlation reasoning analysis in tremendous knowledge. The proposed work can also provide a basis for the context-aware intelligent question and answer.
SGG: Learning to Select, Guide, and Generate for Keyphrase Generation
Zhao, Jing, Bao, Junwei, Wang, Yifan, Wu, Youzheng, He, Xiaodong, Zhou, Bowen
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text, and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrase generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.