Zhao, Enbo
Inferflow: an Efficient and Highly Configurable Inference Engine for Large Language Models
Shi, Shuming, Zhao, Enbo, Cai, Deng, Cui, Leyang, Huang, Xinting, Li, Huayang
With Inferflow, users can serve most of the common transformer models by simply modifying some lines in corresponding configuration files, without writing a single line of source code. Compared with most existing inference engines, Inferflow has some key features. First, by implementing a modular framework of atomic build-blocks and technologies, Inferflow is compositionally generalizable to new models. Second, 3.5-bit quantization is introduced in Inferflow as a tradeoff between 3-bit and 4-bit quantization. Third, hybrid model partitioning for multi-GPU inference is introduced in Inferflow to better balance inference speed and throughput than the commonly-adopted partitionby-layer and partition-by-tensor strategies.
RobustGEC: Robust Grammatical Error Correction Against Subtle Context Perturbation
Zhang, Yue, Cui, Leyang, Zhao, Enbo, Bi, Wei, Shi, Shuming
Grammatical Error Correction (GEC) systems play a vital role in assisting people with their daily writing tasks. However, users may sometimes come across a GEC system that initially performs well but fails to correct errors when the inputs are slightly modified. To ensure an ideal user experience, a reliable GEC system should have the ability to provide consistent and accurate suggestions when encountering irrelevant context perturbations, which we refer to as context robustness. In this paper, we introduce RobustGEC, a benchmark designed to evaluate the context robustness of GEC systems. RobustGEC comprises 5,000 GEC cases, each with one original error-correct sentence pair and five variants carefully devised by human annotators. Utilizing RobustGEC, we reveal that state-of-the-art GEC systems still lack sufficient robustness against context perturbations. In addition, we propose a simple yet effective method for remitting this issue.
Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models
Zhang, Yue, Li, Yafu, Cui, Leyang, Cai, Deng, Liu, Lemao, Fu, Tingchen, Huang, Xinting, Zhao, Enbo, Zhang, Yu, Chen, Yulong, Wang, Longyue, Luu, Anh Tuan, Bi, Wei, Shi, Freda, Shi, Shuming
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Effidit: Your AI Writing Assistant
Shi, Shuming, Zhao, Enbo, Tang, Duyu, Wang, Yan, Li, Piji, Bi, Wei, Jiang, Haiyun, Huang, Guoping, Cui, Leyang, Huang, Xinting, Zhou, Cong, Dai, Yong, Ma, Dongyang
In this technical report, we introduce Effidit (Efficient and Intelligent Editing), a digital writing assistant that facilitates users to write higher-quality text more efficiently by using artificial intelligence (AI) technologies. Previous writing assistants typically provide the function of error checking (to detect and correct spelling and grammatical errors) and limited text-rewriting functionality. With the emergence of large-scale neural language models, some systems support automatically completing a sentence or a paragraph. In Effidit, we significantly expand the capacities of a writing assistant by providing functions in five categories: text completion, error checking, text polishing, keywords to sentences (K2S), and cloud input methods (cloud IME). In the text completion category, Effidit supports generation-based sentence completion, retrieval-based sentence completion, and phrase completion. In contrast, many other writing assistants so far only provide one or two of the three functions. For text polishing, we have three functions: (context-aware) phrase polishing, sentence paraphrasing, and sentence expansion, whereas many other writing assistants often support one or two functions in this category. The main contents of this report include major modules of Effidit, methods for implementing these modules, and evaluation results of some key methods.