Plotting

 Zhao, Dongdong


High-Precision Transformer-Based Visual Servoing for Humanoid Robots in Aligning Tiny Objects

arXiv.org Artificial Intelligence

High-precision tiny object alignment remains a common and critical challenge for humanoid robots in real-world. To address this problem, this paper proposes a vision-based framework for precisely estimating and controlling the relative position between a handheld tool and a target object for humanoid robots, e.g., a screwdriver tip and a screw head slot. By fusing images from the head and torso cameras on a robot with its head joint angles, the proposed Transformer-based visual servoing method can correct the handheld tool's positional errors effectively, especially at a close distance. Experiments on M4-M8 screws demonstrate an average convergence error of 0.8-1.3 mm and a success rate of 93\%-100\%. Through comparative analysis, the results validate that this capability of high-precision tiny object alignment is enabled by the Distance Estimation Transformer architecture and the Multi-Perception-Head mechanism proposed in this paper.


Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load

arXiv.org Artificial Intelligence

Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.


Generating Random SAT Instances: Multiple Solutions could be Predefined and Deeply Hidden

Journal of Artificial Intelligence Research

The generation of SAT instances is an important issue in computer science, and it is useful for researchers to verify the effectiveness of SAT solvers. Addressing this issue could inspire researchers to propose new search strategies. SAT problems exist in various real-world applications, some of which have more than one solution. However, although several algorithms for generating random SAT instances have been proposed, few can be used to generate hard instances that have multiple predefined solutions. In this paper, we propose the KHidden-M algorithm to generate SAT instances with multiple predefined solutions that could be hard to solve by the local search strategy when the number of predefined solutions is small enough and the Hamming distance between them is not less than half of the solution length. Specifically, first, we generate an SAT instance that is satisfied by all of the predefined solutions. Next, if the generated SAT instance does not satisfy the hardness condition, then a strategy will be conducted to adjust clauses through multiple iterations to improve the hardness of the whole instance. We propose three strategies to generate the SAT instance in the first part. The first strategy is called the random strategy, which randomly generates clauses that are satisfied by all of the predefined solutions. The other two strategies are called the estimating strategy and greedy strategy, and using them, we attempt to generate an instance that directly satisfies or is closer to the hardness condition for the local search strategy. We employ two SAT solvers (i.e., WalkSAT and Kissat) to investigate the hardness of the SAT instances generated by our algorithm in the experiments. The experimental results show the effectiveness of the random, estimating and greedy strategies. Compared to the state-of-the-art algorithm for generating SAT instances with predefined solutions, namely, M-hidden, our algorithm could be more effective in generating hard SAT instances.