Goto

Collaborating Authors

 Zhao, Cong


TelOps: AI-driven Operations and Maintenance for Telecommunication Networks

arXiv.org Artificial Intelligence

Telecommunication Networks (TNs) have become the most important infrastructure for data communications over the last century. Operations and maintenance (O&M) is extremely important to ensure the availability, effectiveness, and efficiency of TN communications. Different from the popular O&M technique for IT systems (e.g., the cloud), artificial intelligence for IT Operations (AIOps), O&M for TNs meets the following three fundamental challenges: topological dependence of network components, highly heterogeneous software, and restricted failure data. This article presents TelOps, the first AI-driven O&M framework for TNs, systematically enhanced with mechanism, data, and empirical knowledge. We provide a comprehensive comparison between TelOps and AIOps, and conduct a proof-of-concept case study on a typical O&M task (failure diagnosis) for a real industrial TN. As the first systematic AI-driven O&M framework for TNs, TelOps opens a new door to applying AI techniques to TN automation.


EdgeSync: Faster Edge-model Updating via Adaptive Continuous Learning for Video Data Drift

arXiv.org Artificial Intelligence

Real-time video analytics systems typically place models with fewer weights on edge devices to reduce latency. The distribution of video content features may change over time for various reasons (i.e. light and weather change) , leading to accuracy degradation of existing models, to solve this problem, recent work proposes a framework that uses a remote server to continually train and adapt the lightweight model at edge with the help of complex model. However, existing analytics approaches leave two challenges untouched: firstly, retraining task is compute-intensive, resulting in large model update delays; secondly, new model may not fit well enough with the data distribution of the current video stream. To address these challenges, in this paper, we present EdgeSync, EdgeSync filters the samples by considering both timeliness and inference results to make training samples more relevant to the current video content as well as reduce the update delay, to improve the quality of training, EdgeSync also designs a training management module that can efficiently adjusts the model training time and training order on the runtime. By evaluating real datasets with complex scenes, our method improves about 3.4% compared to existing methods and about 10% compared to traditional means.


FedLED: Label-Free Equipment Fault Diagnosis with Vertical Federated Transfer Learning

arXiv.org Artificial Intelligence

Intelligent equipment fault diagnosis based on Federated Transfer Learning (FTL) attracts considerable attention from both academia and industry. It allows real-world industrial agents with limited samples to construct a fault diagnosis model without jeopardizing their raw data privacy. Existing approaches, however, can neither address the intense sample heterogeneity caused by different working conditions of practical agents, nor the extreme fault label scarcity, even zero, of newly deployed equipment. To address these issues, we present FedLED, the first unsupervised vertical FTL equipment fault diagnosis method, where knowledge of the unlabeled target domain is further exploited for effective unsupervised model transfer. Results of extensive experiments using data of real equipment monitoring demonstrate that FedLED obviously outperforms SOTA approaches in terms of both diagnosis accuracy (up to 4.13 times) and generality. We expect our work to inspire further study on label-free equipment fault diagnosis systematically enhanced by target domain knowledge.


Controlled Randomness Improves the Performance of Transformer Models

arXiv.org Artificial Intelligence

The emergence of pre-trained transformer models brought a massive breakthrough in the field of natural language processing. During pre-training, such transformer models can learn generic language representations with strong generalization capabilities by applying a self-supervised learning approach and leveraging large text corpora. These pretrained language models can be fine-tuned in various downstream tasks without needing to train from scratch compared to traditional training methods, significantly reducing training costs while achieving excellent performance. Models like BERT Devlin et al. (2019), ELECTRA Clark et al. (2020), or T5 Raffel et al. (2020) have achieved remarkable results on several language processing tasks and the most recent developments of even larger language models, made prominent by GPT-3 Brown et al. (2020) and GPT-4 OpenAI (2023) but not limited to these two


Towards Accurate Binary Convolutional Neural Network

Neural Information Processing Systems

We introduce a novel scheme to train binary convolutional neural networks (CNNs) -- CNNs with weights and activations constrained to \{-1,+1\} at run-time. It has been known that using binary weights and activations drastically reduce memory size and accesses, and can replace arithmetic operations with more efficient bitwise operations, leading to much faster test-time inference and lower power consumption. However, previous works on binarizing CNNs usually result in severe prediction accuracy degradation. In this paper, we address this issue with two major innovations: (1) approximating full-precision weights with the linear combination of multiple binary weight bases; (2) employing multiple binary activations to alleviate information loss. The implementation of the resulting binary CNN, denoted as ABC-Net, is shown to achieve much closer performance to its full-precision counterpart, and even reach the comparable prediction accuracy on ImageNet and forest trail datasets, given adequate binary weight bases and activations.


Towards Accurate Binary Convolutional Neural Network

arXiv.org Machine Learning

We introduce a novel scheme to train binary convolutional neural networks (CNNs) -- CNNs with weights and activations constrained to {-1,+1} at run-time. It has been known that using binary weights and activations drastically reduce memory size and accesses, and can replace arithmetic operations with more efficient bitwise operations, leading to much faster test-time inference and lower power consumption. However, previous works on binarizing CNNs usually result in severe prediction accuracy degradation. In this paper, we address this issue with two major innovations: (1) approximating full-precision weights with the linear combination of multiple binary weight bases; (2) employing multiple binary activations to alleviate information loss. The implementation of the resulting binary CNN, denoted as ABC-Net, is shown to achieve much closer performance to its full-precision counterpart, and even reach the comparable prediction accuracy on ImageNet and forest trail datasets, given adequate binary weight bases and activations.