Zhao, Binglei
A Hybrid Cross-Stage Coordination Pre-ranking Model for Online Recommendation Systems
Zhao, Binglei, Qi, Houying, Xu, Guang, Ma, Mian, Zhao, Xiwei, Mei, Feng, Xu, Sulong, Hu, Jinghe
Large-scale recommendation systems often adopt cascading architecture consisting of retrieval, pre-ranking, ranking, and re-ranking stages. With strict latency requirements, pre-ranking utilizes lightweight models to perform a preliminary selection from massive retrieved candidates. However, recent works focus solely on improving consistency with ranking, relying exclusively on downstream stages. Since downstream input is derived from the pre-ranking output, they will exacerbate the sample selection bias (SSB) issue and Matthew effect, leading to sub-optimal results. To address the limitation, we propose a novel Hybrid Cross-Stage Coordination Pre-ranking model (HCCP) to integrate information from upstream (retrieval) and downstream (ranking, re-ranking) stages. Specifically, cross-stage coordination refers to the pre-ranking's adaptability to the entire stream and the role of serving as a more effective bridge between upstream and downstream. HCCP consists of Hybrid Sample Construction and Hybrid Objective Optimization. Hybrid sample construction captures multi-level unexposed data from the entire stream and rearranges them to become the optimal guiding "ground truth" for pre-ranking learning. Hybrid objective optimization contains the joint optimization of consistency and long-tail precision through our proposed Margin InfoNCE loss. It is specifically designed to learn from such hybrid unexposed samples, improving the overall performance and mitigating the SSB issue. The appendix describes a proof of the efficacy of the proposed loss in selecting potential positives. Extensive offline and online experiments indicate that HCCP outperforms SOTA methods by improving cross-stage coordination. It contributes up to 14.9% UCVR and 1.3% UCTR in the JD E-commerce recommendation system. Concerning code privacy, we provide a pseudocode for reference.
REGNet V2: End-to-End REgion-based Grasp Detection Network for Grippers of Different Sizes in Point Clouds
Zhao, Binglei, Wang, Han, Tang, Jian, Ma, Chengzhong, Zhang, Hanbo, Zhang, Jiayuan, Lan, Xuguang, Chen, Xingyu
Grasping has been a crucial but challenging problem in robotics for many years. One of the most important challenges is how to make grasping generalizable and robust to novel objects as well as grippers in unstructured environments. We present \regnet, a robotic grasping system that can adapt to different parallel jaws to grasp diversified objects. To support different grippers, \regnet embeds the gripper parameters into point clouds, based on which it predicts suitable grasp configurations. It includes three components: Score Network (SN), Grasp Region Network (GRN), and Refine Network (RN). In the first stage, SN is used to filter suitable points for grasping by grasp confidence scores. In the second stage, based on the selected points, GRN generates a set of grasp proposals. Finally, RN refines the grasp proposals for more accurate and robust predictions. We devise an analytic policy to choose the optimal grasp to be executed from the predicted grasp set. To train \regnet, we construct a large-scale grasp dataset containing collision-free grasp configurations using different parallel-jaw grippers. The experimental results demonstrate that \regnet with the analytic policy achieves the highest success rate of $74.98\%$ in real-world clutter scenes with $20$ objects, significantly outperforming several state-of-the-art methods, including GPD, PointNetGPD, and S4G. The code and dataset are available at https://github.com/zhaobinglei/REGNet-V2.