Goto

Collaborating Authors

 Zhang, Zizhao


The FACTS Grounding Leaderboard: Benchmarking LLMs' Ability to Ground Responses to Long-Form Input

arXiv.org Artificial Intelligence

We introduce FACTS Grounding, an online leaderboard and associated benchmark that evaluates language models' ability to generate text that is factually accurate with respect to given context in the user prompt. In our benchmark, each prompt includes a user request and a full document, with a maximum length of 32k tokens, requiring long-form responses. The long-form responses are required to be fully grounded in the provided context document while fulfilling the user request. Models are evaluated using automated judge models in two phases: (1) responses are disqualified if they do not fulfill the user request; (2) they are judged as accurate if the response is fully grounded in the provided document. The automated judge models were comprehensively evaluated against a held-out test-set to pick the best prompt template, and the final factuality score is an aggregate of multiple judge models to mitigate evaluation bias. The FACTS Grounding leaderboard will be actively maintained over time, and contains both public and private splits to allow for external participation while guarding the integrity of the leaderboard. It can be found at https://www.kaggle.com/facts-leaderboard.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs

arXiv.org Artificial Intelligence

Although RDBs store vast amounts of rich, informative data spread across interconnected tables, the progress of predictive machine learning models as applied to such tasks arguably falls well behind advances in other domains such as computer vision or natural language processing. This deficit stems, at least in part, from the lack of established/public RDB benchmarks as needed for training and evaluation purposes. As a result, related model development thus far often defaults to tabular approaches trained on ubiquitous single-table benchmarks, or on the relational side, graph-based alternatives such as GNNs applied to a completely different set of graph datasets devoid of tabular characteristics. To more precisely target RDBs lying at the nexus of these two complementary regimes, we explore a broad class of baseline models predicated on: (i) converting multi-table datasets into graphs using various strategies equipped with efficient subsampling, while preserving tabular characteristics; and (ii) trainable models with well-matched inductive biases that output predictions based on these input subgraphs. Then, to address the dearth of suitable public benchmarks and reduce siloed comparisons, we assemble a diverse collection of (i) large-scale RDB datasets and (ii) coincident predictive tasks. From a delivery standpoint, we operationalize the above four dimensions (4D) of exploration within a unified, scalable open-source toolbox called 4DBInfer. We conclude by presenting evaluations using 4DBInfer, the results of which highlight the importance of considering each such dimension in the design of RDB predictive models, as well as the limitations of more naive approaches such as simply joining adjacent tables. Our source code is released at https://github.com/awslabs/multi-table-benchmark .


CodecLM: Aligning Language Models with Tailored Synthetic Data

arXiv.org Artificial Intelligence

Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


Steering Prototypes with Prompt-tuning for Rehearsal-free Continual Learning

arXiv.org Artificial Intelligence

In the context of continual learning, prototypes-as representative class embeddings-offer advantages in memory conservation and the mitigation of catastrophic forgetting. However, challenges related to semantic drift and prototype interference persist. In this study, we introduce the Contrastive Prototypical Prompt (CPP) approach. Through task-specific prompt-tuning, underpinned by a contrastive learning objective, we effectively address both aforementioned challenges. Our evaluations on four challenging class-incremental benchmarks reveal that CPP achieves a significant 4% to 6% improvement over state-of-the-art methods. Importantly, CPP operates without a rehearsal buffer and narrows the performance divergence between continual and offline joint-learning, suggesting an innovative scheme for Transformer-based continual learning systems.


RDBench: ML Benchmark for Relational Databases

arXiv.org Artificial Intelligence

Benefiting from high-quality datasets and standardized evaluation metrics, machine learning (ML) has achieved sustained progress and widespread applications. However, while applying machine learning to relational databases (RDBs), the absence of a well-established benchmark remains a significant obstacle to the development of ML. To address this issue, we introduce ML Benchmark For Relational Databases (RDBench), a standardized benchmark that aims to promote reproducible ML research on RDBs that include multiple tables. RDBench offers diverse RDB datasets of varying scales, domains, and relational structures, organized into 4 levels. Notably, to simplify the adoption of RDBench for diverse ML domains, for any given database, RDBench exposes three types of interfaces including tabular data, homogeneous graphs, and heterogeneous graphs, sharing the same underlying task definition. For the first time, RDBench enables meaningful comparisons between ML methods from diverse domains, ranging from XGBoost to Graph Neural Networks, under RDB prediction tasks. We design multiple classification and regression tasks for each RDB dataset and report averaged results over the same dataset, further enhancing the robustness of the experimental findings. RDBench is implemented with DBGym, a user-friendly platform for ML research and application on databases, enabling benchmarking new ML methods with RDBench at ease.


Metaheuristic Algorithms in Artificial Intelligence with Applications to Bioinformatics, Biostatistics, Ecology and, the Manufacturing Industries

arXiv.org Artificial Intelligence

Nature-inspired metaheuristic algorithms are important components of artificial intelligence, and are increasingly used across disciplines to tackle various types of challenging optimization problems. We apply a newly proposed nature-inspired metaheuristic algorithm called competitive swarm optimizer with mutated agents (CSO-MA) and demonstrate its flexibility and out-performance relative to its competitors in a variety of optimization problems in the statistical sciences. In particular, we show the algorithm is efficient and can incorporate various cost structures or multiple user-specified nonlinear constraints. Our applications include (i) finding maximum likelihood estimates of parameters in a single cell generalized trend model to study pseudotime in bioinformatics, (ii) estimating parameters in a commonly used Rasch model in education research, (iii) finding M-estimates for a Cox regression in a Markov renewal model and (iv) matrix completion to impute missing values in a two compartment model. In addition we discuss applications to (v) select variables optimally in an ecology problem and (vi) design a car refueling experiment for the auto industry using a logistic model with multiple interacting factors.


QueryForm: A Simple Zero-shot Form Entity Query Framework

arXiv.org Artificial Intelligence

Zero-shot transfer learning for document understanding is a crucial yet under-investigated scenario to help reduce the high cost involved in annotating document entities. We present a novel query-based framework, QueryForm, that extracts entity values from form-like documents in a zero-shot fashion. QueryForm contains a dual prompting mechanism that composes both the document schema and a specific entity type into a query, which is used to prompt a Transformer model to perform a single entity extraction task. Furthermore, we propose to leverage large-scale query-entity pairs generated from form-like webpages with weak HTML annotations to pre-train QueryForm. By unifying pre-training and fine-tuning into the same query-based framework, QueryForm enables models to learn from structured documents containing various entities and layouts, leading to better generalization to target document types without the need for target-specific training data. QueryForm sets new state-of-the-art average F1 score on both the XFUND (+4.6%~10.1%) and the Payment (+3.2%~9.5%) zero-shot benchmark, with a smaller model size and no additional image input.


Exploit Customer Life-time Value with Memoryless Experiments

arXiv.org Artificial Intelligence

As a measure of the long-term contribution produced by customers in a service or product relationship, life-time value, or LTV, can more comprehensively find the optimal strategy for service delivery. However, it is challenging to accurately abstract the LTV scene, model it reasonably, and find the optimal solution. The current theories either cannot precisely express LTV because of the single modeling structure, or there is no efficient solution. We propose a general LTV modeling method, which solves the problem that customers' long-term contribution is difficult to quantify while existing methods, such as modeling the click-through rate, only pursue the short-term contribution. At the same time, we also propose a fast dynamic programming solution based on a mutated bisection method and the memoryless repeated experiments assumption. The model and method can be applied to different service scenarios, such as the recommendation system. Experiments on real-world datasets confirm the effectiveness of the proposed model and optimization method. In addition, this whole LTV structure was deployed at a large E-commerce mobile phone application, where it managed to select optimal push message sending time and achieved a 10\% LTV improvement.