Zhang, Zixing
ProsodyFM: Unsupervised Phrasing and Intonation Control for Intelligible Speech Synthesis
He, Xiangheng, Chen, Junjie, Zhang, Zixing, Schuller, Björn W.
Prosody contains rich information beyond the literal meaning of words, which is crucial for the intelligibility of speech. Current models still fall short in phrasing and intonation; they not only miss or misplace breaks when synthesizing long sentences with complex structures but also produce unnatural intonation. We propose ProsodyFM, a prosody-aware text-to-speech synthesis (TTS) model with a flow-matching (FM) backbone that aims to enhance the phrasing and intonation aspects of prosody. ProsodyFM introduces two key components: a Phrase Break Encoder to capture initial phrase break locations, followed by a Duration Predictor for the flexible adjustment of break durations; and a Terminal Intonation Encoder which learns a bank of intonation shape tokens combined with a novel Pitch Processor for more robust modeling of human-perceived intonation change. ProsodyFM is trained with no explicit prosodic labels and yet can uncover a broad spectrum of break durations and intonation patterns. Experimental results demonstrate that ProsodyFM can effectively improve the phrasing and intonation aspects of prosody, thereby enhancing the overall intelligibility compared to four state-of-the-art (SOTA) models. Out-of-distribution experiments show that this prosody improvement can further bring ProsodyFM superior generalizability for unseen complex sentences and speakers. Our case study intuitively illustrates the powerful and fine-grained controllability of ProsodyFM over phrasing and intonation.
Re-Parameterization of Lightweight Transformer for On-Device Speech Emotion Recognition
Zhang, Zixing, Dong, Zhongren, Xu, Weixiang, Han, Jing
With the increasing implementation of machine learning models on edge or Internet-of-Things (IoT) devices, deploying advanced models on resource-constrained IoT devices remains challenging. Transformer models, a currently dominant neural architecture, have achieved great success in broad domains but their complexity hinders its deployment on IoT devices with limited computation capability and storage size. Although many model compression approaches have been explored, they often suffer from notorious performance degradation. To address this issue, we introduce a new method, namely Transformer Re-parameterization, to boost the performance of lightweight Transformer models. It consists of two processes: the High-Rank Factorization (HRF) process in the training stage and the deHigh-Rank Factorization (deHRF) process in the inference stage. In the former process, we insert an additional linear layer before the Feed-Forward Network (FFN) of the lightweight Transformer. It is supposed that the inserted HRF layers can enhance the model learning capability. In the later process, the auxiliary HRF layer will be merged together with the following FFN layer into one linear layer and thus recover the original structure of the lightweight model. To examine the effectiveness of the proposed method, we evaluate it on three widely used Transformer variants, i.e., ConvTransformer, Conformer, and SpeechFormer networks, in the application of speech emotion recognition on the IEMOCAP, M3ED and DAIC-WOZ datasets. Experimental results show that our proposed method consistently improves the performance of lightweight Transformers, even making them comparable to large models. The proposed re-parameterization approach enables advanced Transformer models to be deployed on resource-constrained IoT devices.
Semi-Supervised Cognitive State Classification from Speech with Multi-View Pseudo-Labeling
Li, Yuanchao, Zhang, Zixing, Han, Jing, Bell, Peter, Lai, Catherine
The lack of labeled data is a common challenge in speech classification tasks, particularly those requiring extensive subjective assessment, such as cognitive state classification. In this work, we propose a Semi-Supervised Learning (SSL) framework, introducing a novel multi-view pseudo-labeling method that leverages both acoustic and linguistic characteristics to select the most confident data for training the classification model. Acoustically, unlabeled data are compared to labeled data using the Frechet audio distance, calculated from embeddings generated by multiple audio encoders. Linguistically, large language models are prompted to revise automatic speech recognition transcriptions and predict labels based on our proposed task-specific knowledge. High-confidence data are identified when pseudo-labels from both sources align, while mismatches are treated as low-confidence data. A bimodal classifier is then trained to iteratively label the low-confidence data until a predefined criterion is met. We evaluate our SSL framework on emotion recognition and dementia detection tasks. Experimental results demonstrate that our method achieves competitive performance compared to fully supervised learning using only 30% of the labeled data and significantly outperforms two selected baselines.
HAFFormer: A Hierarchical Attention-Free Framework for Alzheimer's Disease Detection From Spontaneous Speech
Dong, Zhongren, Zhang, Zixing, Xu, Weixiang, Han, Jing, Ou, Jianjun, Schuller, Björn W.
Automatically detecting Alzheimer's Disease (AD) from spontaneous speech plays an important role in its early diagnosis. Recent approaches highly rely on the Transformer architectures due to its efficiency in modelling long-range context dependencies. However, the quadratic increase in computational complexity associated with self-attention and the length of audio poses a challenge when deploying such models on edge devices. In this context, we construct a novel framework, namely Hierarchical Attention-Free Transformer (HAFFormer), to better deal with long speech for AD detection. Specifically, we employ an attention-free module of Multi-Scale Depthwise Convolution to replace the self-attention and thus avoid the expensive computation, and a GELU-based Gated Linear Unit to replace the feedforward layer, aiming to automatically filter out the redundant information. Moreover, we design a hierarchical structure to force it to learn a variety of information grains, from the frame level to the dialogue level. By conducting extensive experiments on the ADReSS-M dataset, the introduced HAFFormer can achieve competitive results (82.6% accuracy) with other recent work, but with significant computational complexity and model size reduction compared to the standard Transformer. This shows the efficiency of HAFFormer in dealing with long audio for AD detection.
ESIHGNN: Event-State Interactions Infused Heterogeneous Graph Neural Network for Conversational Emotion Recognition
Zha, Xupeng, Zhao, Huan, Zhang, Zixing
Conversational Emotion Recognition (CER) aims to predict the emotion expressed by an utterance (referred to as an ``event'') during a conversation. Existing graph-based methods mainly focus on event interactions to comprehend the conversational context, while overlooking the direct influence of the speaker's emotional state on the events. In addition, real-time modeling of the conversation is crucial for real-world applications but is rarely considered. Toward this end, we propose a novel graph-based approach, namely Event-State Interactions infused Heterogeneous Graph Neural Network (ESIHGNN), which incorporates the speaker's emotional state and constructs a heterogeneous event-state interaction graph to model the conversation. Specifically, a heterogeneous directed acyclic graph neural network is employed to dynamically update and enhance the representations of events and emotional states at each turn, thereby improving conversational coherence and consistency. Furthermore, to further improve the performance of CER, we enrich the graph's edges with external knowledge. Experimental results on four publicly available CER datasets show the superiority of our approach and the effectiveness of the introduced heterogeneous event-state interaction graph.
STAA-Net: A Sparse and Transferable Adversarial Attack for Speech Emotion Recognition
Chang, Yi, Ren, Zhao, Zhang, Zixing, Jing, Xin, Qian, Kun, Shao, Xi, Hu, Bin, Schultz, Tanja, Schuller, Björn W.
Speech contains rich information on the emotions of humans, and Speech Emotion Recognition (SER) has been an important topic in the area of human-computer interaction. The robustness of SER models is crucial, particularly in privacy-sensitive and reliability-demanding domains like private healthcare. Recently, the vulnerability of deep neural networks in the audio domain to adversarial attacks has become a popular area of research. However, prior works on adversarial attacks in the audio domain primarily rely on iterative gradient-based techniques, which are time-consuming and prone to overfitting the specific threat model. Furthermore, the exploration of sparse perturbations, which have the potential for better stealthiness, remains limited in the audio domain. To address these challenges, we propose a generator-based attack method to generate sparse and transferable adversarial examples to deceive SER models in an end-to-end and efficient manner. We evaluate our method on two widely-used SER datasets, Database of Elicited Mood in Speech (DEMoS) and Interactive Emotional dyadic MOtion CAPture (IEMOCAP), and demonstrate its ability to generate successful sparse adversarial examples in an efficient manner. Moreover, our generated adversarial examples exhibit model-agnostic transferability, enabling effective adversarial attacks on advanced victim models.
Customising General Large Language Models for Specialised Emotion Recognition Tasks
Peng, Liyizhe, Zhang, Zixing, Pang, Tao, Han, Jing, Zhao, Huan, Chen, Hao, Schuller, Björn W.
The advent of large language models (LLMs) has gained tremendous attention over the past year. Previous studies have shown the astonishing performance of LLMs not only in other tasks but also in emotion recognition in terms of accuracy, universality, explanation, robustness, few/zero-shot learning, and others. Leveraging the capability of LLMs inevitably becomes an essential solution for emotion recognition. To this end, we further comprehensively investigate how LLMs perform in linguistic emotion recognition if we concentrate on this specific task. Specifically, we exemplify a publicly available and widely used LLM -- Chat General Language Model, and customise it for our target by using two different modal adaptation techniques, i.e., deep prompt tuning and low-rank adaptation. The experimental results obtained on six widely used datasets present that the adapted LLM can easily outperform other state-of-the-art but specialised deep models. This indicates the strong transferability and feasibility of LLMs in the field of emotion recognition.
Refashioning Emotion Recognition Modelling: The Advent of Generalised Large Models
Zhang, Zixing, Peng, Liyizhe, Pang, Tao, Han, Jing, Zhao, Huan, Schuller, Bjorn W.
After the inception of emotion recognition or affective computing, it has increasingly become an active research topic due to its broad applications. Over the past couple of decades, emotion recognition models have gradually migrated from statistically shallow models to neural network-based deep models, which can significantly boost the performance of emotion recognition models and consistently achieve the best results on different benchmarks. Therefore, in recent years, deep models have always been considered the first option for emotion recognition. However, the debut of large language models (LLMs), such as ChatGPT, has remarkably astonished the world due to their emerged capabilities of zero/few-shot learning, in-context learning, chain-of-thought, and others that are never shown in previous deep models. In the present paper, we comprehensively investigate how the LLMs perform in emotion recognition in terms of diverse aspects, including in-context learning, few-short learning, accuracy, generalisation, and explanation. Moreover, we offer some insights and pose other potential challenges, hoping to ignite broader discussions about enhancing emotion recognition in the new era of advanced and generalised large models.
Dynamic Difficulty Awareness Training for Continuous Emotion Prediction
Zhang, Zixing, Han, Jing, Coutinho, Eduardo, Schuller, Björn
Abstract--Time-continuous emotion prediction has become an increasingly compelling task in machine learning. Considerable efforts have been made to advance the performance of these systems. Nonetheless, the main focus has been the development of more sophisticated models and the incorporation of different expressive modalities (e. g., speech, face, and physiology). In this paper, motivated by the benefit of difficulty awareness in a human learning procedure, we propose a novel machine learning framework, namely, Dynamic Difficulty Awareness Training (DDAT), which sheds fresh light on the research - directly exploiting the difficulties in learning to boost the machine learning process. The DDAT framework consists of two stages: information retrieval and information exploitation. In the first stage, we make use of the reconstruction error of input features or the annotation uncertainty to estimate the difficulty of learning specific information. The obtained difficulty level is then used in tandem with original features to update the model input in a second learning stage with the expectation that the model can learn to focus on high difficulty regions of the learning process. We perform extensive experiments on a benchmark database (RECOLA) to evaluate the effectiveness of the proposed framework. The experimental results show that our approach outperforms related baselines as well as other well-established time-continuous emotion prediction systems, which suggests that dynamically integrating the difficulty information for neural networks can help enhance the learning process. Time-continuous emotion prediction systems have received widespread interest in the machine learning (ML) community over the past decade [1]-[3]. One of the main reasons for this interest is the fact that time-continuous emotion predictions can analyse subtle and complex affective states of humans over time and play a central role in smart conversational agents that aim to achieve a natural and intuitive interaction between humans and machines [2], [4]-[7]. Great efforts have been made in this field, and most of them can generally be classified into two strands. Z. Zhang is with GLAM - the Group on Language, Audio & Music, Imperial College London (UK).
Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives
Han, Jing, Zhang, Zixing, Cummins, Nicholas, Schuller, Björn
Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities.