Goto

Collaborating Authors

 Zhang, Ziqiang


RPAF: A Reinforcement Prediction-Allocation Framework for Cache Allocation in Large-Scale Recommender Systems

arXiv.org Artificial Intelligence

Modern recommender systems are built upon computation-intensive infrastructure, and it is challenging to perform real-time computation for each request, especially in peak periods, due to the limited computational resources. Recommending by user-wise result caches is widely used when the system cannot afford a real-time recommendation. However, it is challenging to allocate real-time and cached recommendations to maximize the users' overall engagement. This paper shows two key challenges to cache allocation, i.e., the value-strategy dependency and the streaming allocation. Then, we propose a reinforcement prediction-allocation framework (RPAF) to address these issues. RPAF is a reinforcement-learning-based two-stage framework containing prediction and allocation stages. The prediction stage estimates the values of the cache choices considering the value-strategy dependency, and the allocation stage determines the cache choices for each individual request while satisfying the global budget constraint. We show that the challenge of training RPAF includes globality and the strictness of budget constraints, and a relaxed local allocator (RLA) is proposed to address this issue. Moreover, a PoolRank algorithm is used in the allocation stage to deal with the streaming allocation problem. Experiments show that RPAF significantly improves users' engagement under computational budget constraints.


SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data

arXiv.org Artificial Intelligence

How to boost speech pre-training with textual data is an unsolved problem due to the fact that speech and text are very different modalities with distinct characteristics. In this paper, we propose a cross-modal Speech and Language Model (SpeechLM) to explicitly align speech and text pre-training with a pre-defined unified discrete representation. Specifically, we introduce two alternative discrete tokenizers to bridge the speech and text modalities, including phoneme-unit and hidden-unit tokenizers, which can be trained using a small amount of paired speech-text data. Based on the trained tokenizers, we convert the unlabeled speech and text data into tokens of phoneme units or hidden units. The pre-training objective is designed to unify the speech and the text into the same discrete semantic space with a unified Transformer network. We evaluate SpeechLM on various spoken language processing tasks including speech recognition, speech translation, and universal representation evaluation framework SUPERB, demonstrating significant improvements on content-related tasks. Code and models are available at https://aka.ms/SpeechLM.


VioLA: Unified Codec Language Models for Speech Recognition, Synthesis, and Translation

arXiv.org Artificial Intelligence

Recent research shows a big convergence in model architecture, training objectives, and inference methods across various tasks for different modalities. In this paper, we propose VioLA, a single auto-regressive Transformer decoder-only network that unifies various cross-modal tasks involving speech and text, such as speech-to-text, text-to-text, text-to-speech, and speech-to-speech tasks, as a conditional codec language model task via multi-task learning framework. To accomplish this, we first convert all the speech utterances to discrete tokens (similar to the textual data) using an offline neural codec encoder. In such a way, all these tasks are converted to token-based sequence conversion problems, which can be naturally handled with one conditional language model. We further integrate task IDs (TID) and language IDs (LID) into the proposed model to enhance the modeling capability of handling different languages and tasks. Experimental results demonstrate that the proposed VioLA model can support both single-modal and cross-modal tasks well, and the decoder-only model achieves a comparable and even better performance than the strong baselines.


VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for Speech Representation Learning

arXiv.org Artificial Intelligence

Although speech is a simple and effective way for humans to communicate with the outside world, a more realistic speech interaction contains multimodal information, e.g., vision, text. How to design a unified framework to integrate different modal information and leverage different resources (e.g., visual-audio pairs, audio-text pairs, unlabeled speech, and unlabeled text) to facilitate speech representation learning was not well explored. In this paper, we propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model). The proposed VATLM employs a unified backbone network to model the modality-independent information and utilizes three simple modality-dependent modules to preprocess visual, speech, and text inputs. In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens, given by our proposed unified tokenizer. We evaluate the pre-trained VATLM on audio-visual related downstream tasks, including audio-visual speech recognition (AVSR), visual speech recognition (VSR) tasks. Results show that the proposed VATLM outperforms previous the state-of-the-art models, such as audio-visual pre-trained AV-HuBERT model, and analysis also demonstrates that VATLM is capable of aligning different modalities into the same space. To facilitate future research, we release the code and pre-trained models at https://aka.ms/vatlm.


Speak Foreign Languages with Your Own Voice: Cross-Lingual Neural Codec Language Modeling

arXiv.org Artificial Intelligence

We propose a cross-lingual neural codec language model, VALL-E X, for cross-lingual speech synthesis. Specifically, we extend VALL-E and train a multi-lingual conditional codec language model to predict the acoustic token sequences of the target language speech by using both the source language speech and the target language text as prompts. VALL-E X inherits strong in-context learning capabilities and can be applied for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translation tasks. Experimental results show that it can generate high-quality speech in the target language via just one speech utterance in the source language as a prompt while preserving the unseen speaker's voice, emotion, and acoustic environment. Moreover, VALL-E X effectively alleviates the foreign accent problems, which can be controlled by a language ID. Audio samples are available at \url{https://aka.ms/vallex}.


Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers

arXiv.org Artificial Intelligence

We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called Vall-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. Vall-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that Vall-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find Vall-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis. See https://aka.ms/valle for demos of our work.