Zhang, Zhongfei
Self-Taught Cross-Domain Few-Shot Learning with Weakly Supervised Object Localization and Task-Decomposition
Liu, Xiyao, Ji, Zhong, Pang, Yanwei, Zhang, Zhongfei
The domain shift between the source and target domain is the main challenge in Cross-Domain Few-Shot Learning (CD-FSL). However, the target domain is absolutely unknown during the training on the source domain, which results in lacking directed guidance for target tasks. We observe that since there are similar backgrounds in target domains, it can apply self-labeled samples as prior tasks to transfer knowledge onto target tasks. To this end, we propose a task-expansion-decomposition framework for CD-FSL, called Self-Taught (ST) approach, which alleviates the problem of non-target guidance by constructing task-oriented metric spaces. Specifically, Weakly Supervised Object Localization (WSOL) and self-supervised technologies are employed to enrich task-oriented samples by exchanging and rotating the discriminative regions, which generates a more abundant task set. Then these tasks are decomposed into several tasks to finish the task of few-shot recognition and rotation classification. It helps to transfer the source knowledge onto the target tasks and focus on discriminative regions. We conduct extensive experiments under the cross-domain setting including 8 target domains: CUB, Cars, Places, Plantae, CropDieases, EuroSAT, ISIC, and ChestX. Experimental results demonstrate that the proposed ST approach is applicable to various metric-based models, and provides promising improvements in CD-FSL.
Perceiving Physical Equation by Observing Visual Scenarios
Huang, Siyu, Cheng, Zhi-Qi, Li, Xi, Wu, Xiao, Zhang, Zhongfei, Hauptmann, Alexander
Inferring universal laws of the environment is an important ability of human intelligence as well as a symbol of general AI. In this paper, we take a step toward this goal such that we introduce a new challenging problem of inferring invariant physical equation from visual scenarios. For instance, teaching a machine to automatically derive the gravitational acceleration formula by watching a free-falling object. To tackle this challenge, we present a novel pipeline comprised of an Observer Engine and a Physicist Engine by respectively imitating the actions of an observer and a physicist in the real world. Generally, the Observer Engine watches the visual scenarios and then extracting the physical properties of objects. The Physicist Engine analyses these data and then summarizing the inherent laws of object dynamics. Specifically, the learned laws are expressed by mathematical equations such that they are more interpretable than the results given by common probabilistic models. Experiments on synthetic videos have shown that our pipeline is able to discover physical equations on various physical worlds with different visual appearances.
FR-ANet: A Face Recognition Guided Facial Attribute Classification Network
Cao, Jiajiong (Zhejiang University) | Li, Yingming (Zhejiang University) | Li, Xi (Zhejiang University) | Zhang, Zhongfei (Zhejiang University)
In this paper, we study the problem of facial attribute learning. In particular, we propose a Face Recognition guided facial Attribute classification Network, called FR-ANet. All the attributes share low-level features, while high-level features are specially learned for attribute groups. Further, to utilize the identity information, high-level features are merged to perform face identity recognition. The experimental results on CelebA and LFWA datasets demonstrate the promise of the FR-ANet.
Multi-Channel Pyramid Person Matching Network for Person Re-Identification
Mao, Chaojie (College of Information Science &) | Li, Yingming (Electronic Engineering, Zhejiang University, Hangzhou) | Zhang, Yaqing (College of Information Science &) | Zhang, Zhongfei (Electronic Engineering, Zhejiang University, Hangzhou) | Li, Xi (College of Information Science &)
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.
Learning With Incomplete Labels
Li, Yingming (Zhejiang University) | Xu, Zenglin (University of Electronic Science and Technology of China) | Zhang, Zhongfei (Zhejiang University)
For many real-world tagging problems, training labels are usually obtained through social tagging and are notoriously incomplete. Consequently, handling data with incomplete labels has become a difficult challenge, which usually leads to a degenerated performance on label prediction. To improve the generalization performance, in this paper, we first propose the Improved Cross-View learning (referred as ICVL) model, which considers both global and local patterns of label relationship to enrich the original label set. Further, by extending the ICVL model with an outlier detection mechanism, we introduce the Improved Cross-View learning with Outlier Detection (referred as ICVL-OD) model to remove the abnormal tags resulting from label enrichment. Extensive evaluations on three benchmark datasets demonstrate that ICVL and ICVL-OD outstand with superior performances in comparison with the competing methods.
Structural Correspondence Learning for Cross-Lingual Sentiment Classification with One-to-Many Mappings
Li, Nana (Hebei University of Technology) | Zhai, Shuangfei (Binghamton University) | Zhang, Zhongfei (Binghamton University) | Liu, Boying (Hebei University of Technology)
Structural correspondence learning (SCL) is an effective method for cross-lingual sentiment classification. This approach uses unlabeled documents along with a word translation oracle to automatically induce task specific, cross-lingual correspondences. It transfers knowledge through identifying important features, i.e., pivot features. For simplicity, however, it assumes that the word translation oracle maps each pivot feature in source language to exactly only one word in target language. This one-to-one mapping between words in different languages is too strict. Also the context is not considered at all. In this paper, we propose a cross-lingual SCL based on distributed representation of words; it can learn meaningful one-to-many mappings for pivot words using large amounts of monolingual data and a small dictionary. We conduct experiments on NLP&CC 2013 cross-lingual sentiment analysis dataset, employing English as source language, and Chinese as target language. Our method does not rely on the parallel corpora and the experimental results show that our approach is more competitive than the state-of-the-art methods in cross-lingual sentiment classification.
Structural Correspondence Learning for Cross-lingual Sentiment Classification with One-to-many Mappings
Li, Nana, Zhai, Shuangfei, Zhang, Zhongfei, Liu, Boying
Structural correspondence learning (SCL) is an effective method for cross-lingual sentiment classification. This approach uses unlabeled documents along with a word translation oracle to automatically induce task specific, cross-lingual correspondences. It transfers knowledge through identifying important features, i.e., pivot features. For simplicity, however, it assumes that the word translation oracle maps each pivot feature in source language to exactly only one word in target language. This one-to-one mapping between words in different languages is too strict. Also the context is not considered at all. In this paper, we propose a cross-lingual SCL based on distributed representation of words; it can learn meaningful one-to-many mappings for pivot words using large amounts of monolingual data and a small dictionary. We conduct experiments on NLP\&CC 2013 cross-lingual sentiment analysis dataset, employing English as source language, and Chinese as target language. Our method does not rely on the parallel corpora and the experimental results show that our approach is more competitive than the state-of-the-art methods in cross-lingual sentiment classification.
Deep Structured Energy Based Models for Anomaly Detection
Zhai, Shuangfei, Cheng, Yu, Lu, Weining, Zhang, Zhongfei
In this paper, we attack the anomaly detection problem by directly modeling the data distribution with deep architectures. We propose deep structured energy based models (DSEBMs), where the energy function is the output of a deterministic deep neural network with structure. We develop novel model architectures to integrate EBMs with different types of data such as static data, sequential data, and spatial data, and apply appropriate model architectures to adapt to the data structure. Our training algorithm is built upon the recent development of score matching \cite{sm}, which connects an EBM with a regularized autoencoder, eliminating the need for complicated sampling method. Statistically sound decision criterion can be derived for anomaly detection purpose from the perspective of the energy landscape of the data distribution. We investigate two decision criteria for performing anomaly detection: the energy score and the reconstruction error. Extensive empirical studies on benchmark tasks demonstrate that our proposed model consistently matches or outperforms all the competing methods.
Structured Embedding via Pairwise Relations and Long-Range Interactions in Knowledge Base
Wu, Fei (Zhejiang University) | Song, Jun (Zhejiang University) | Yang, Yi (University of Technology, Sydney) | Li, Xi (Zhejiang University) | Zhang, Zhongfei (Zhejiang University) | Zhuang, Yueting (Zhejiang University)
We consider the problem of embedding entities and relations of knowledge bases into low-dimensional continuous vector spaces (distributed representations). Unlike most existing approaches, which are primarily efficient for modelling pairwise relations between entities, we attempt to explicitly model both pairwise relations and long-range interactions between entities, by interpreting them as linear operators on the low-dimensional embeddings of the entities. Therefore, in this paper we introduces Path-Ranking to capture the long-range interactions of knowledge graph and at the same time preserve the pairwise relations of knowledge graph; we call it 'structured embedding via pairwise relation and long-range interactions' (referred to as SePLi). Comparing with the-state-of-the-art models, SePLi achieves better performances of embeddings.
A Topic Model for Linked Documents and Update Rules for its Estimation
Guo, Zhen (State University of New York at Binghamton) | Zhu, Shenghuo (NEC Laboratories America, Inc.) | Zhang, Zhongfei (State University of New York at Binghamton) | Chi, Yun (NEC Laboratories America, Inc.) | Gong, Yihong (NEC Laboratories America, Inc.)
The latent topic model plays an important role in the unsupervised learning from a corpus, which provides a probabilistic interpretation of the corpus in terms of the latent topic space. An underpinning assumption which most of the topic models are based on is that the documents are assumed to be independent of each other. However, this assumption does not hold true in reality and the relations among the documents are available in different ways, such as the citation relations among the research papers. To address this limitation, in this paper we present a Bernoulli Process Topic (BPT) model, where the interdependence among the documents is modeled by a random Bernoulli process. In the BPT model a document is modeled as a distribution over topics that is a mixture of the distributions associated with the related documents. Although BPT aims at obtaining a better document modeling by incorporating the relations among the documents, it could also be applied to many applications including detecting the topics from corpora and clustering the documents. We apply the BPT model to several document collections and the experimental comparisons against several state-of-the-art approaches demonstrate the promising performance.