Zhang, Zhiyong
NeuFlow: Real-time, High-accuracy Optical Flow Estimation on Robots Using Edge Devices
Zhang, Zhiyong, Jiang, Huaizu, Singh, Hanumant
Real-time high-accuracy optical flow estimation is a crucial component in various applications, including localization and mapping in robotics, object tracking, and activity recognition in computer vision. While recent learning-based optical flow methods have achieved high accuracy, they often come with heavy computation costs. In this paper, we propose a highly efficient optical flow architecture, called NeuFlow, that addresses both high accuracy and computational cost concerns. The architecture follows a global-to-local scheme. Given the features of the input images extracted at different spatial resolutions, global matching is employed to estimate an initial optical flow on the 1/16 resolution, capturing large displacement, which is then refined on the 1/8 resolution with lightweight CNN layers for better accuracy. We evaluate our approach on Jetson Orin Nano and RTX 2080 to demonstrate efficiency improvements across different computing platforms. We achieve a notable 10x-80x speedup compared to several state-of-the-art methods, while maintaining comparable accuracy. Our approach achieves around 30 FPS on edge computing platforms, which represents a significant breakthrough in deploying complex computer vision tasks such as SLAM on small robots like drones. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow.
Challenges of Indoor SLAM: A multi-modal multi-floor dataset for SLAM evaluation
Kaveti, Pushyami, Gupta, Aniket, Giaya, Dennis, Karp, Madeline, Keil, Colin, Nir, Jagatpreet, Zhang, Zhiyong, Singh, Hanumant
Robustness in Simultaneous Localization and Mapping (SLAM) remains one of the key challenges for the real-world deployment of autonomous systems. SLAM research has seen significant progress in the last two and a half decades, yet many state-of-the-art (SOTA) algorithms still struggle to perform reliably in real-world environments. There is a general consensus in the research community that we need challenging real-world scenarios which bring out different failure modes in sensing modalities. In this paper, we present a novel multi-modal indoor SLAM dataset covering challenging common scenarios that a robot will encounter and should be robust to. Our data was collected with a mobile robotics platform across multiple floors at Northeastern University's ISEC building. Such a multi-floor sequence is typical of commercial office spaces characterized by symmetry across floors and, thus, is prone to perceptual aliasing due to similar floor layouts. The sensor suite comprises seven global shutter cameras, a high-grade MEMS inertial measurement unit (IMU), a ZED stereo camera, and a 128-channel high-resolution lidar. Along with the dataset, we benchmark several SLAM algorithms and highlight the problems faced during the runs, such as perceptual aliasing, visual degradation, and trajectory drift. The benchmarking results indicate that parts of the dataset work well with some algorithms, while other data sections are challenging for even the best SOTA algorithms. The dataset is available at https://github.com/neufieldrobotics/NUFR-M3F.
Linguistic-Enhanced Transformer with CTC Embedding for Speech Recognition
Zhang, Xulong, Wang, Jianzong, Cheng, Ning, Zhao, Mengyuan, Zhang, Zhiyong, Xiao, Jing
The recent emergence of joint CTC-Attention model shows significant improvement in automatic speech recognition (ASR). The improvement largely lies in the modeling of linguistic information by decoder. The decoder joint-optimized with an acoustic encoder renders the language model from ground-truth sequences in an auto-regressive manner during training. However, the training corpus of the decoder is limited to the speech transcriptions, which is far less than the corpus needed to train an acceptable language model. This leads to poor robustness of decoder. To alleviate this problem, we propose linguistic-enhanced transformer, which introduces refined CTC information to decoder during training process, so that the decoder can be more robust. Our experiments on AISHELL-1 speech corpus show that the character error rate (CER) is relatively reduced by up to 7%. We also find that in joint CTC-Attention ASR model, decoder is more sensitive to linguistic information than acoustic information.
Recurrent Neural Network Training with Dark Knowledge Transfer
Tang, Zhiyuan, Wang, Dong, Zhang, Zhiyong
Recurrent neural networks (RNNs), particularly long short-term memory (LSTM), have gained much attention in automatic speech recognition (ASR). Although some successful stories have been reported, training RNNs remains highly challenging, especially with limited training data. Recent research found that a well-trained model can be used as a teacher to train other child models, by using the predictions generated by the teacher model as supervision. This knowledge transfer learning has been employed to train simple neural nets with a complex one, so that the final performance can reach a level that is infeasible to obtain by regular training. In this paper, we employ the knowledge transfer learning approach to train RNNs (precisely LSTM) using a deep neural network (DNN) model as the teacher. This is different from most of the existing research on knowledge transfer learning, since the teacher (DNN) is assumed to be weaker than the child (RNN); however, our experiments on an ASR task showed that it works fairly well: without applying any tricks on the learning scheme, this approach can train RNNs successfully even with limited training data.
Knowledge Transfer Pre-training
Tang, Zhiyuan, Wang, Dong, Pan, Yiqiao, Zhang, Zhiyong
Pre-training is crucial for learning deep neural networks. Most of existing pre-training methods train simple models (e.g., restricted Boltzmann machines) and then stack them layer by layer to form the deep structure. This layer-wise pre-training has found strong theoretical foundation and broad empirical support. However, it is not easy to employ such method to pre-train models without a clear multi-layer structure,e.g., recurrent neural networks (RNNs). This paper presents a new pre-training approach based on knowledge transfer learning. In contrast to the layer-wise approach which trains model components incrementally, the new approach trains the entire model as a whole but with an easier objective function. This is achieved by utilizing soft targets produced by a prior trained model (teacher model). Compared to the conventional layer-wise methods, this new method does not care about the model structure, so can be used to pre-train very complex models. Experiments on a speech recognition task demonstrated that with this approach, complex RNNs can be well trained with a weaker deep neural network (DNN) model. Furthermore, the new method can be combined with conventional layer-wise pre-training to deliver additional gains.