Goto

Collaborating Authors

 Zhang, Yuzhe


From Data to Action: Charting A Data-Driven Path to Combat Antimicrobial Resistance

arXiv.org Artificial Intelligence

Antibiotics are often grouped by their mechanisms of action, such as blocking protein synthesis, disrupting folate biosynthesis, changing cell wall construction, compromising the cell membrane integrity and affecting DNA replication [93, 25]. These antibiotics, whether created in labs or found in nature, serve as the primary defence against bacterial infections. However, bacteria employ a series of strategies in response to resist these antibiotics, including inactivating antibiotics through enzymatic degradation, altering the antibiotic target, modifying cell membrane permeability, and using efflux pumps to maintain intracellular antibiotic concentrations of antibiotics below inhibitory levels [25]. Moreover, the gene transfer of antibiotic-resistant bacteria (ARB) further aggravates this challenge [92].


LibEER: A Comprehensive Benchmark and Algorithm Library for EEG-based Emotion Recognition

arXiv.org Artificial Intelligence

EEG-based emotion recognition (EER) has gained significant attention due to its potential for understanding and analyzing human emotions. While recent advancements in deep learning techniques have substantially improved EER, the field lacks a convincing benchmark and comprehensive open-source libraries. This absence complicates fair comparisons between models and creates reproducibility challenges for practitioners, which collectively hinder progress. To address these issues, we introduce LibEER, a comprehensive benchmark and algorithm library designed to facilitate fair comparisons in EER. LibEER carefully selects popular and powerful baselines, harmonizes key implementation details across methods, and provides a standardized codebase in PyTorch. By offering a consistent evaluation framework with standardized experimental settings, LibEER enables unbiased assessments of over ten representative deep learning models for EER across the four most widely used datasets. Additionally, we conduct a thorough, reproducible comparison of model performance and efficiency, providing valuable insights to guide researchers in the selection and design of EER models. Moreover, we make observations and in-depth analysis on the experiment results and identify current challenges in this community. We hope that our work will not only lower entry barriers for newcomers to EEG-based emotion recognition but also contribute to the standardization of research in this domain, fostering steady development. The library and source code are publicly available at https://github.com/XJTU-EEG/LibEER.


Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models

arXiv.org Artificial Intelligence

Causal graph recovery is traditionally done using statistical estimation-based methods or based on individual's knowledge about variables of interests. They often suffer from data collection biases and limitations of individuals' knowledge. The advance of large language models (LLMs) provides opportunities to address these problems. We propose a novel method that leverages LLMs to deduce causal relationships in general causal graph recovery tasks. This method leverages knowledge compressed in LLMs and knowledge LLMs extracted from scientific publication database as well as experiment data about factors of interest to achieve this goal. Our method gives a prompting strategy to extract associational relationships among those factors and a mechanism to perform causality verification for these associations. Comparing to other LLM-based methods that directly instruct LLMs to do the highly complex causal reasoning, our method shows clear advantage on causal graph quality on benchmark datasets. More importantly, as causality among some factors may change as new research results emerge, our method show sensitivity to new evidence in the literature and can provide useful information for updating causal graphs accordingly.


Redefining Information Retrieval of Structured Database via Large Language Models

arXiv.org Artificial Intelligence

Retrieval augmentation is critical when Language Models (LMs) exploit non-parametric knowledge related to the query through external knowledge bases before reasoning. The retrieved information is incorporated into LMs as context alongside the query, enhancing the reliability of responses towards factual questions. Prior researches in retrieval augmentation typically follow a retriever-generator paradigm. In this context, traditional retrievers encounter challenges in precisely and seamlessly extracting query-relevant information from knowledge bases. To address this issue, this paper introduces a novel retrieval augmentation framework called ChatLR that primarily employs the powerful semantic understanding ability of Large Language Models (LLMs) as retrievers to achieve precise and concise information retrieval. Additionally, we construct an LLM-based search and question answering system tailored for the financial domain by fine-tuning LLM on two tasks including Text2API and API-ID recognition. Experimental results demonstrate the effectiveness of ChatLR in addressing user queries, achieving an overall information retrieval accuracy exceeding 98.8\%.


CANAMRF: An Attention-Based Model for Multimodal Depression Detection

arXiv.org Artificial Intelligence

Multimodal depression detection is an important research topic that aims to predict human mental states using multimodal data. Previous methods treat different modalities equally and fuse each modality by na\"ive mathematical operations without measuring the relative importance between them, which cannot obtain well-performed multimodal representations for downstream depression tasks. In order to tackle the aforementioned concern, we present a Cross-modal Attention Network with Adaptive Multi-modal Recurrent Fusion (CANAMRF) for multimodal depression detection. CANAMRF is constructed by a multimodal feature extractor, an Adaptive Multimodal Recurrent Fusion module, and a Hybrid Attention Module. Through experimentation on two benchmark datasets, CANAMRF demonstrates state-of-the-art performance, underscoring the effectiveness of our proposed approach.


Training Robust Deep Physiological Measurement Models with Synthetic Video-based Data

arXiv.org Artificial Intelligence

Recent advances in supervised deep learning techniques have demonstrated the possibility to remotely measure human physiological vital signs (e.g., photoplethysmograph, heart rate) just from facial videos. However, the performance of these methods heavily relies on the availability and diversity of real labeled data. Yet, collecting large-scale real-world data with high-quality labels is typically challenging and resource intensive, which also raises privacy concerns when storing personal bio-metric data. Synthetic video-based datasets (e.g., SCAMPS \cite{mcduff2022scamps}) with photo-realistic synthesized avatars are introduced to alleviate the issues while providing high-quality synthetic data. However, there exists a significant gap between synthetic and real-world data, which hinders the generalization of neural models trained on these synthetic datasets. In this paper, we proposed several measures to add real-world noise to synthetic physiological signals and corresponding facial videos. We experimented with individual and combined augmentation methods and evaluated our framework on three public real-world datasets. Our results show that we were able to reduce the average MAE from 6.9 to 2.0.


Power in Liquid Democracy

arXiv.org Artificial Intelligence

The paper develops a theory of power for delegable proxy voting systems. We define a power index able to measure the influence of both voters and delegators. Using this index, which we characterize axiomatically, we extend an earlier game-theoretic model by incorporating power-seeking behavior by agents. We analytically study the existence of pure strategy Nash equilibria in such a model. Finally, by means of simulations, we study the effect of relevant parameters on the emergence of power inequalities in the model.


Weighted Matching Markets with Budget Constraints

Journal of Artificial Intelligence Research

We investigate markets with a set of students on one side and a set of colleges on the other. A student and college can be linked by a weighted contract that defines the student's wage, while a college's budget for hiring students is limited. Stability is a crucial requirement for matching mechanisms to be applied in the real world. A standard stability requirement is coalitional stability, i.e., no pair of a college and group of students has any incentive to deviate. We find that a coalitionally stable matching is not guaranteed to exist, verifying the coalitional stability for a given matching is coNP-complete, and the problem of finding whether a coalitionally stable matching exists in a given market, is SigmaP2-complete: NPNP-complete. Other negative results also hold when blocking coalitions contain at most two students and one college. Given these computational hardness results, we pursue a weaker stability requirement called pairwise stability, where no pair of a college and single student has an incentive to deviate. Unfortunately, a pairwise stable matching is not guaranteed to exist either. Thus, we consider a restricted market called a typed weighted market, in which students are partitioned into types that induce their possible wages. We then design a strategy-proof and Pareto efficient mechanism that works in polynomial-time for computing a pairwise stable matching in typed weighted markets.