Goto

Collaborating Authors

 Zhang, Yuyi


FontDiffuser: One-Shot Font Generation via Denoising Diffusion with Multi-Scale Content Aggregation and Style Contrastive Learning

arXiv.org Artificial Intelligence

Automatic font generation is an imitation task, which aims to create a font library that mimics the style of reference images while preserving the content from source images. Although existing font generation methods have achieved satisfactory performance, they still struggle with complex characters and large style variations. To address these issues, we propose FontDiffuser, a diffusion-based image-to-image one-shot font generation method, which innovatively models the font imitation task as a noise-to-denoise paradigm. In our method, we introduce a Multi-scale Content Aggregation (MCA) block, which effectively combines global and local content cues across different scales, leading to enhanced preservation of intricate strokes of complex characters. Moreover, to better manage the large variations in style transfer, we propose a Style Contrastive Refinement (SCR) module, which is a novel structure for style representation learning. It utilizes a style extractor to disentangle styles from images, subsequently supervising the diffusion model via a meticulously designed style contrastive loss. Extensive experiments demonstrate FontDiffuser's state-of-the-art performance in generating diverse characters and styles. It consistently excels on complex characters and large style changes compared to previous methods. The code is available at https://github.com/yeungchenwa/FontDiffuser.


Inspire the Large Language Model by External Knowledge on BioMedical Named Entity Recognition

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated dominating performance in many NLP tasks, especially on generative tasks. However, they often fall short in some information extraction tasks, particularly those requiring domain-specific knowledge, such as Biomedical Named Entity Recognition (NER). In this paper, inspired by Chain-of-thought, we leverage the LLM to solve the Biomedical NER step-by-step: break down the NER task into entity span extraction and entity type determination. Additionally, for entity type determination, we inject entity knowledge to address the problem that LLM's lack of domain knowledge when predicting entity category. Experimental results show a significant improvement in our two-step BioNER approach compared to previous few-shot LLM baseline. Additionally, the incorporation of external knowledge significantly enhances entity category determination performance.