Goto

Collaborating Authors

 Zhang, Yueyi


Fine-Grained Evaluation of Large Vision-Language Models in Autonomous Driving

arXiv.org Artificial Intelligence

Existing benchmarks for Vision-Language Model (VLM) on autonomous driving (AD) primarily assess interpretability through open-form visual question answering (QA) within coarse-grained tasks, which remain insufficient to assess capabilities in complex driving scenarios. To this end, we introduce $\textbf{VLADBench}$, a challenging and fine-grained dataset featuring close-form QAs that progress from static foundational knowledge and elements to advanced reasoning for dynamic on-road situations. The elaborate $\textbf{VLADBench}$ spans 5 key domains: Traffic Knowledge Understanding, General Element Recognition, Traffic Graph Generation, Target Attribute Comprehension, and Ego Decision-Making and Planning. These domains are further broken down into 11 secondary aspects and 29 tertiary tasks for a granular evaluation. A thorough assessment of general and domain-specific (DS) VLMs on this benchmark reveals both their strengths and critical limitations in AD contexts. To further exploit the cognitive and reasoning interactions among the 5 domains for AD understanding, we start from a small-scale VLM and train the DS models on individual domain datasets (collected from 1.4M DS QAs across public sources). The experimental results demonstrate that the proposed benchmark provides a crucial step toward a more comprehensive assessment of VLMs in AD, paving the way for the development of more cognitively sophisticated and reasoning-capable AD systems.


Spiking Point Transformer for Point Cloud Classification

arXiv.org Artificial Intelligence

Spiking Neural Networks (SNNs) offer an attractive and energy-efficient alternative to conventional Artificial Neural Networks (ANNs) due to their sparse binary activation. When SNN meets Transformer, it shows great potential in 2D image processing. However, their application for 3D point cloud remains underexplored. To this end, we present Spiking Point Transformer (SPT), the first transformer-based SNN framework for point cloud classification. Specifically, we first design Queue-Driven Sampling Direct Encoding for point cloud to reduce computational costs while retaining the most effective support points at each time step. We introduce the Hybrid Dynamics Integrate-and-Fire Neuron (HD-IF), designed to simulate selective neuron activation and reduce over-reliance on specific artificial neurons. SPT attains state-of-the-art results on three benchmark datasets that span both real-world and synthetic datasets in the SNN domain. Meanwhile, the theoretical energy consumption of SPT is at least 6.4$\times$ less than its ANN counterpart.


CEIA: CLIP-Based Event-Image Alignment for Open-World Event-Based Understanding

arXiv.org Artificial Intelligence

Currently training a large event-text model still poses a huge challenge due to the shortage of paired event-text data. In response to this challenge, CEIA learns to align event and image data as an alternative instead of directly aligning event and text data. Specifically, we leverage the rich event-image datasets to learn an event embedding space aligned with the image space of CLIP through contrastive learning. In this way, event and text data are naturally aligned via using image data as a bridge. Particularly, CEIA offers two distinct advantages. First, it allows us to take full advantage of the existing event-image datasets to make up the shortage of large-scale event-text datasets. Second, leveraging more training data, it also exhibits the flexibility to boost performance, ensuring scalable capability. In highlighting the versatility of our framework, we make extensive evaluations through a diverse range of event-based multi-modal applications, such as object recognition, event-image retrieval, event-text retrieval, and domain adaptation. The outcomes demonstrate CEIA's distinct zero-shot superiority over existing methods on these applications.


Graph Relation Distillation for Efficient Biomedical Instance Segmentation

arXiv.org Artificial Intelligence

Instance-aware embeddings predicted by deep neural networks have revolutionized biomedical instance segmentation, but its resource requirements are substantial. Knowledge distillation offers a solution by transferring distilled knowledge from heavy teacher networks to lightweight yet high-performance student networks. However, existing knowledge distillation methods struggle to extract knowledge for distinguishing instances and overlook global relation information. To address these challenges, we propose a graph relation distillation approach for efficient biomedical instance segmentation, which considers three essential types of knowledge: instance-level features, instance relations, and pixel-level boundaries. We introduce two graph distillation schemes deployed at both the intra-image level and the inter-image level: instance graph distillation (IGD) and affinity graph distillation (AGD). IGD constructs a graph representing instance features and relations, transferring these two types of knowledge by enforcing instance graph consistency. AGD constructs an affinity graph representing pixel relations to capture structured knowledge of instance boundaries, transferring boundary-related knowledge by ensuring pixel affinity consistency. Experimental results on a number of biomedical datasets validate the effectiveness of our approach, enabling student models with less than $ 1\%$ parameters and less than $10\%$ inference time while achieving promising performance compared to teacher models.


GET: Group Event Transformer for Event-Based Vision

arXiv.org Artificial Intelligence

Event cameras are a type of novel neuromorphic sen-sor that has been gaining increasing attention. Existing event-based backbones mainly rely on image-based designs to extract spatial information within the image transformed from events, overlooking important event properties like time and polarity. To address this issue, we propose a novel Group-based vision Transformer backbone for Event-based vision, called Group Event Transformer (GET), which de-couples temporal-polarity information from spatial infor-mation throughout the feature extraction process. Specifi-cally, we first propose a new event representation for GET, named Group Token, which groups asynchronous events based on their timestamps and polarities. Then, GET ap-plies the Event Dual Self-Attention block, and Group Token Aggregation module to facilitate effective feature commu-nication and integration in both the spatial and temporal-polarity domains. After that, GET can be integrated with different downstream tasks by connecting it with vari-ous heads. We evaluate our method on four event-based classification datasets (Cifar10-DVS, N-MNIST, N-CARS, and DVS128Gesture) and two event-based object detection datasets (1Mpx and Gen1), and the results demonstrate that GET outperforms other state-of-the-art methods. The code is available at https://github.com/Peterande/GET-Group-Event-Transformer.