Goto

Collaborating Authors

 Zhang, Yuanyu


Knowing What Not to Do: Leverage Language Model Insights for Action Space Pruning in Multi-agent Reinforcement Learning

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) is employed to develop autonomous agents that can learn to adopt cooperative or competitive strategies within complex environments. However, the linear increase in the number of agents leads to a combinatorial explosion of the action space, which may result in algorithmic instability, difficulty in convergence, or entrapment in local optima. While researchers have designed a variety of effective algorithms to compress the action space, these methods also introduce new challenges, such as the need for manually designed prior knowledge or reliance on the structure of the problem, which diminishes the applicability of these techniques. In this paper, we introduce Evolutionary action SPAce Reduction with Knowledge (eSpark), an exploration function generation framework driven by large language models (LLMs) to boost exploration and prune unnecessary actions in MARL. Using just a basic prompt that outlines the overall task and setting, eSpark is capable of generating exploration functions in a zero-shot manner, identifying and pruning redundant or irrelevant state-action pairs, and then achieving autonomous improvement from policy feedback. In reinforcement learning tasks involving inventory management and traffic light control encompassing a total of 15 scenarios, eSpark consistently outperforms the combined MARL algorithm in all scenarios, achieving an average performance gain of 34.4% and 9.9% in the two types of tasks respectively. Additionally, eSpark has proven to be capable of managing situations with a large number of agents, securing a 29.7% improvement in scalability challenges that featured over 500 agents. The code can be found in https://github.com/LiuZhihao2022/eSpark.git.


Dealing with Imbalanced Classes in Bot-IoT Dataset

arXiv.org Artificial Intelligence

With the rapidly spreading usage of Internet of Things (IoT) devices, a network intrusion detection system (NIDS) plays an important role in detecting and protecting various types of attacks in the IoT network. To evaluate the robustness of the NIDS in the IoT network, the existing work proposed a realistic botnet dataset in the IoT network (Bot-IoT dataset) and applied it to machine learning-based anomaly detection. This dataset contains imbalanced normal and attack packets because the number of normal packets is much smaller than that of attack ones. The nature of imbalanced data may make it difficult to identify the minority class correctly. In this thesis, to address the class imbalance problem in the Bot-IoT dataset, we propose a binary classification method with synthetic minority over-sampling techniques (SMOTE). The proposed classifier aims to detect attack packets and overcome the class imbalance problem using the SMOTE algorithm. Through numerical results, we demonstrate the proposed classifier's fundamental characteristics and the impact of imbalanced data on its performance.