Goto

Collaborating Authors

 Zhang, Yongdong


OmniPrism: Learning Disentangled Visual Concept for Image Generation

arXiv.org Artificial Intelligence

Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes. However, existing methods are typically constrained to single-aspect concept generation or are easily disrupted by irrelevant concepts in multi-aspect concept scenarios, leading to concept confusion and hindering creative generation. To address this, we propose OmniPrism, a visual concept disentangling approach for creative image generation. Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts. We utilize the rich semantic space of a multimodal extractor to achieve concept disentanglement from given images and concept guidance. To disentangle concepts with different semantics, we construct a paired concept disentangled dataset (PCD-200K), where each pair shares the same concept such as content, style, and composition. We learn disentangled concept representations through our contrastive orthogonal disentangled (COD) training pipeline, which are then injected into additional diffusion cross-attention layers for generation. A set of block embeddings is designed to adapt each block's concept domain in the diffusion models. Extensive experiments demonstrate that our method can generate high-quality, concept-disentangled results with high fidelity to text prompts and desired concepts.


LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation

arXiv.org Artificial Intelligence

The believable simulation of multi-user behavior is crucial for understanding complex social systems. Recently, large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence across various tasks. However, real human societies are often dynamic and complex, involving numerous individuals engaging in multimodal interactions. In this paper, taking e-commerce scenarios as an example, we present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs. In LMAgent, besides freely chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce. To simulate this complex system, we introduce a self-consistency prompting mechanism to augment agents' multimodal capabilities, resulting in significantly improved decision-making performance over the existing multi-agent system. Moreover, we propose a fast memory mechanism combined with the small-world model to enhance system efficiency, which supports more than 10,000 agent simulations in a society. Experiments on agents' behavior show that these agents achieve comparable performance to humans in behavioral indicators. Furthermore, compared with the existing LLMs-based multi-agent system, more different and valuable phenomena are exhibited, such as herd behavior, which demonstrates the potential of LMAgent in credible large-scale social behavior simulations.


A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions

arXiv.org Artificial Intelligence

Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graphbased Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves 255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining 100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available. Despite the remarkable capabilities large language models (LLMs) have demonstrated in various linguistic tasks, significant gaps remain in their ability to comprehend and solve intricate reasoning tasks (e.g., mathematics, coding, physics, and chemistry). One effective approach to bridging these gaps is using large-scale, high-quality synthetic data. However, it is still a challenge to develop a low-cost and effective synthesis pipeline. Take mathematics as an example. The two main approaches for building high-quality mathematics reasoning datasets are data filtering and data synthesis. Data filtering (Yue et al., 2024b; Shao et al., 2024; Ying et al., 2024) involves extracting data from pre-training corpora such as Common Crawl, and rewriting it using advanced commercial models or human annotation.


MILP-StuDio: MILP Instance Generation via Block Structure Decomposition

arXiv.org Artificial Intelligence

Mixed-integer linear programming (MILP) is one of the most popular mathematical formulations with numerous applications. In practice, improving the performance of MILP solvers often requires a large amount of high-quality data, which can be challenging to collect. Researchers thus turn to generation techniques to generate additional MILP instances. However, existing approaches do not take into account specific block structures -- which are closely related to the problem formulations -- in the constraint coefficient matrices (CCMs) of MILPs. Consequently, they are prone to generate computationally trivial or infeasible instances due to the disruptions of block structures and thus problem formulations. To address this challenge, we propose a novel MILP generation framework, called Block Structure Decomposition (MILP-StuDio), to generate high-quality instances by preserving the block structures. Specifically, MILP-StuDio begins by identifying the blocks in CCMs and decomposing the instances into block units, which serve as the building blocks of MILP instances. We then design three operators to construct new instances by removing, substituting, and appending block units in the original instances, enabling us to generate instances with flexible sizes. An appealing feature of MILP-StuDio is its strong ability to preserve the feasibility and computational hardness of the generated instances. Experiments on the commonly-used benchmarks demonstrate that using instances generated by MILP-StuDio is able to significantly reduce over 10% of the solving time for learning-based solvers.


Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models

arXiv.org Artificial Intelligence

Generation of plausible but incorrect factual information, often termed hallucination, has attracted significant research interest. Retrieval-augmented language model (RALM) -- which enhances models with up-to-date knowledge -- emerges as a promising method to reduce hallucination. However, existing RALMs may instead exacerbate hallucination when retrieving lengthy contexts. To address this challenge, we propose COFT, a novel \textbf{CO}arse-to-\textbf{F}ine highligh\textbf{T}ing method to focus on different granularity-level key texts, thereby avoiding getting lost in lengthy contexts. Specifically, COFT consists of three components: \textit{recaller}, \textit{scorer}, and \textit{selector}. First, \textit{recaller} applies a knowledge graph to extract potential key entities in a given context. Second, \textit{scorer} measures the importance of each entity by calculating its contextual weight. Finally, \textit{selector} selects high contextual weight entities with a dynamic threshold algorithm and highlights the corresponding paragraphs, sentences, or words in a coarse-to-fine manner. Extensive experiments on the knowledge hallucination benchmark demonstrate the effectiveness of COFT, leading to a superior performance over $30\%$ in the F1 score metric. Moreover, COFT also exhibits remarkable versatility across various long-form tasks, such as reading comprehension and question answering.


MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting

arXiv.org Artificial Intelligence

Dynamic scene reconstruction is a long-term challenge in the field of 3D vision. Recently, the emergence of 3D Gaussian Splatting has provided new insights into this problem. Although subsequent efforts rapidly extend static 3D Gaussian to dynamic scenes, they often lack explicit constraints on object motion, leading to optimization difficulties and performance degradation. To address the above issues, we propose a novel deformable 3D Gaussian splatting framework called MotionGS, which explores explicit motion priors to guide the deformation of 3D Gaussians. Specifically, we first introduce an optical flow decoupling module that decouples optical flow into camera flow and motion flow, corresponding to camera movement and object motion respectively. Then the motion flow can effectively constrain the deformation of 3D Gaussians, thus simulating the motion of dynamic objects. Additionally, a camera pose refinement module is proposed to alternately optimize 3D Gaussians and camera poses, mitigating the impact of inaccurate camera poses. Extensive experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods and exhibits significant superiority in both qualitative and quantitative results.


DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection

arXiv.org Artificial Intelligence

With the rapid development of face recognition (FR) systems, the privacy of face images on social media is facing severe challenges due to the abuse of unauthorized FR systems. Some studies utilize adversarial attack techniques to defend against malicious FR systems by generating adversarial examples. However, the generated adversarial examples, i.e., the protected face images, tend to suffer from subpar visual quality and low transferability. In this paper, we propose a novel face protection approach, dubbed DiffAM, which leverages the powerful generative ability of diffusion models to generate high-quality protected face images with adversarial makeup transferred from reference images. To be specific, we first introduce a makeup removal module to generate non-makeup images utilizing a fine-tuned diffusion model with guidance of textual prompts in CLIP space. As the inverse process of makeup transfer, makeup removal can make it easier to establish the deterministic relationship between makeup domain and non-makeup domain regardless of elaborate text prompts. Then, with this relationship, a CLIP-based makeup loss along with an ensemble attack strategy is introduced to jointly guide the direction of adversarial makeup domain, achieving the generation of protected face images with natural-looking makeup and high black-box transferability. Extensive experiments demonstrate that DiffAM achieves higher visual quality and attack success rates with a gain of 12.98% under black-box setting compared with the state of the arts. The code will be available at https://github.com/HansSunY/DiffAM.


Learning to Cut via Hierarchical Sequence/Set Model for Efficient Mixed-Integer Programming

arXiv.org Artificial Intelligence

Cutting planes (cuts) play an important role in solving mixed-integer linear programs (MILPs), which formulate many important real-world applications. Cut selection heavily depends on (P1) which cuts to prefer and (P2) how many cuts to select. Although modern MILP solvers tackle (P1)-(P2) by human-designed heuristics, machine learning carries the potential to learn more effective heuristics. However, many existing learning-based methods learn which cuts to prefer, neglecting the importance of learning how many cuts to select. Moreover, we observe that (P3) what order of selected cuts to prefer significantly impacts the efficiency of MILP solvers as well. To address these challenges, we propose a novel hierarchical sequence/set model (HEM) to learn cut selection policies. Specifically, HEM is a bi-level model: (1) a higher-level module that learns how many cuts to select, (2) and a lower-level module -- that formulates the cut selection as a sequence/set to sequence learning problem -- to learn policies selecting an ordered subset with the cardinality determined by the higher-level module. To the best of our knowledge, HEM is the first data-driven methodology that well tackles (P1)-(P3) simultaneously. Experiments demonstrate that HEM significantly improves the efficiency of solving MILPs on eleven challenging MILP benchmarks, including two Huawei's real problems.


Alleviating Structural Distribution Shift in Graph Anomaly Detection

arXiv.org Artificial Intelligence

Graph anomaly detection (GAD) is a challenging binary classification problem due to its different structural distribution between anomalies and normal nodes -- abnormal nodes are a minority, therefore holding high heterophily and low homophily compared to normal nodes. Furthermore, due to various time factors and the annotation preferences of human experts, the heterophily and homophily can change across training and testing data, which is called structural distribution shift (SDS) in this paper. The mainstream methods are built on graph neural networks (GNNs), benefiting the classification of normals from aggregating homophilous neighbors, yet ignoring the SDS issue for anomalies and suffering from poor generalization. This work solves the problem from a feature view. We observe that the degree of SDS varies between anomalies and normal nodes. Hence to address the issue, the key lies in resisting high heterophily for anomalies meanwhile benefiting the learning of normals from homophily. We tease out the anomaly features on which we constrain to mitigate the effect of heterophilous neighbors and make them invariant. We term our proposed framework as Graph Decomposition Network (GDN). Extensive experiments are conducted on two benchmark datasets, and the proposed framework achieves a remarkable performance boost in GAD, especially in an SDS environment where anomalies have largely different structural distribution across training and testing environments. Codes are open-sourced in https://github.com/blacksingular/wsdm_GDN.


ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences

arXiv.org Artificial Intelligence

Recently, the increasing demand for superior medical services has highlighted the discrepancies in the medical infrastructure. With big data, especially texts, forming the foundation of medical services, there is an exigent need for effective natural language processing (NLP) solutions tailored to the healthcare domain. Conventional approaches leveraging pre-trained models present promising results in this domain and current large language models (LLMs) offer advanced foundation for medical text processing. However, most medical LLMs are trained only with supervised fine-tuning (SFT), even though it efficiently empowers LLMs to understand and respond to medical instructions but is ineffective in learning domain knowledge and aligning with human preference. Another engineering barrier that prevents current medical LLM from better text processing ability is their restricted context length (e.g., 2,048 tokens), making it hard for the LLMs to process long context, which is frequently required in the medical domain. In this work, we propose ChiMed-GPT, a new benchmark LLM designed explicitly for Chinese medical domain, with enlarged context length to 4,096 tokens and undergoes a comprehensive training regime with pre-training, SFT, and RLHF. Evaluations on real-world tasks including information extraction, question answering, and dialogue generation demonstrate ChiMed-GPT's superior performance over general domain LLMs. Furthermore, we analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients, so as to contribute to further responsible development of LLMs in the medical domain. The code and model are released at https://github.com/synlp/ChiMed-GPT.