Zhang, Yingjie
Align in Depth: Defending Jailbreak Attacks via Progressive Answer Detoxification
Zhang, Yingjie, Liu, Tong, Zhao, Zhe, Meng, Guozhu, Chen, Kai
Large Language Models (LLMs) are vulnerable to jailbreak attacks, which use crafted prompts to elicit toxic responses. These attacks exploit LLMs' difficulty in dynamically detecting harmful intents during the generation process. Traditional safety alignment methods, often relying on the initial few generation steps, are ineffective due to limited computational budget. This paper proposes DEEPALIGN, a robust defense framework that fine-tunes LLMs to progressively detoxify generated content, significantly improving both the computational budget and effectiveness of mitigating harmful generation. Our approach uses a hybrid loss function operating on hidden states to directly improve LLMs' inherent awareness of toxity during generation. Furthermore, we redefine safe responses by generating semantically relevant answers to harmful queries, thereby increasing robustness against representation-mutation attacks. Evaluations across multiple LLMs demonstrate state-of-the-art defense performance against six different attack types, reducing Attack Success Rates by up to two orders of magnitude compared to previous state-of-the-art defense while preserving utility. This work advances LLM safety by addressing limitations of conventional alignment through dynamic, context-aware mitigation.
Conditional Diffusion Models Based Conditional Independence Testing
Yang, Yanfeng, Li, Shuai, Zhang, Yingjie, Sun, Zhuoran, Shu, Hai, Chen, Ziqi, Zhang, Renming
Conditional independence (CI) testing is a fundamental task in modern statistics and machine learning. The conditional randomization test (CRT) was recently introduced to test whether two random variables, $X$ and $Y$, are conditionally independent given a potentially high-dimensional set of random variables, $Z$. The CRT operates exceptionally well under the assumption that the conditional distribution $X|Z$ is known. However, since this distribution is typically unknown in practice, accurately approximating it becomes crucial. In this paper, we propose using conditional diffusion models (CDMs) to learn the distribution of $X|Z$. Theoretically and empirically, it is shown that CDMs closely approximate the true conditional distribution. Furthermore, CDMs offer a more accurate approximation of $X|Z$ compared to GANs, potentially leading to a CRT that performs better than those based on GANs. To accommodate complex dependency structures, we utilize a computationally efficient classifier-based conditional mutual information (CMI) estimator as our test statistic. The proposed testing procedure performs effectively without requiring assumptions about specific distribution forms or feature dependencies, and is capable of handling mixed-type conditioning sets that include both continuous and discrete variables. Theoretical analysis shows that our proposed test achieves a valid control of the type I error. A series of experiments on synthetic data demonstrates that our new test effectively controls both type-I and type-II errors, even in high dimensional scenarios.
Global Challenge for Safe and Secure LLMs Track 1
Jia, Xiaojun, Huang, Yihao, Liu, Yang, Tan, Peng Yan, Yau, Weng Kuan, Mak, Mun-Thye, Sim, Xin Ming, Ng, Wee Siong, Ng, See Kiong, Liu, Hanqing, Zhou, Lifeng, Yan, Huanqian, Sun, Xiaobing, Liu, Wei, Wang, Long, Qian, Yiming, Liu, Yong, Yang, Junxiao, Zhang, Zhexin, Lei, Leqi, Chen, Renmiao, Lu, Yida, Cui, Shiyao, Wang, Zizhou, Li, Shaohua, Wang, Yan, Goh, Rick Siow Mong, Zhen, Liangli, Zhang, Yingjie, Zhao, Zhe
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks. With the increasing integration of LLMs in critical sectors such as healthcare, finance, and public administration, ensuring these models are resilient to adversarial attacks is vital for preventing misuse and upholding ethical standards. This competition focused on two distinct tracks designed to evaluate and enhance the robustness of LLM security frameworks. Track 1 tasked participants with developing automated methods to probe LLM vulnerabilities by eliciting undesirable responses, effectively testing the limits of existing safety protocols within LLMs. Participants were challenged to devise techniques that could bypass content safeguards across a diverse array of scenarios, from offensive language to misinformation and illegal activities. Through this process, Track 1 aimed to deepen the understanding of LLM vulnerabilities and provide insights for creating more resilient models.
Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph
Zhang, Zhaoyang, Zhu, Hongtu, Chen, Ziqi, Zhang, Yingjie, Shu, Hai
In this paper, we aim to address a significant challenge in the field of missing data imputation: identifying and leveraging the interdependencies among features to enhance missing data imputation for tabular data. We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN). Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them. The bipartite segment of our framework inductively learns embedding representations for nodes, efficiently utilizing the comprehensive information encapsulated in the attributed edges. In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features. When compared to contemporary leading imputation methodologies, BCGNN consistently outperforms them, achieving a noteworthy average reduction of 15% in mean absolute error for feature imputation tasks under different missing mechanisms. Our extensive experimental investigation confirms that an in-depth grasp of the interdependence structure substantially enhances the model's feature embedding ability. We also highlight the model's superior performance in label prediction tasks involving missing data, and its formidable ability to generalize to unseen data points.
Making Them Ask and Answer: Jailbreaking Large Language Models in Few Queries via Disguise and Reconstruction
Liu, Tong, Zhang, Yingjie, Zhao, Zhe, Dong, Yinpeng, Meng, Guozhu, Chen, Kai
In recent years, large language models (LLMs) have demonstrated notable success across various tasks, but the trustworthiness of LLMs is still an open problem. One specific threat is the potential to generate toxic or harmful responses. Attackers can craft adversarial prompts that induce harmful responses from LLMs. In this work, we pioneer a theoretical foundation in LLMs security by identifying bias vulnerabilities within the safety fine-tuning and design a black-box jailbreak method named DRA (Disguise and Reconstruction Attack), which conceals harmful instructions through disguise and prompts the model to reconstruct the original harmful instruction within its completion. We evaluate DRA across various open-source and closed-source models, showcasing state-of-the-art jailbreak success rates and attack efficiency. Notably, DRA boasts a 91.1% attack success rate on OpenAI GPT-4 chatbot.